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Abstract— Deep learning (DL) has proven to be a suitable
approach for despeckling synthetic aperture radar (SAR) images.
So far, most DL models are trained to reduce speckle that follows
a particular distribution, either using simulated noise or a specific
set of real SAR images, limiting the applicability of these methods
for real SAR images with unknown noise statistics. In this article,
we present a DL method, deSpeckNet,1 that estimates the speckle
noise distribution and the despeckled image simultaneously.
Since it does not depend on a specific noise model, deSpeckNet
generalizes well across SAR acquisitions in a variety of landcover
conditions. We evaluated the performance of deSpeckNet on
single polarized Sentinel-1 images acquired in Indonesia, The
Democratic Republic of Congo, and The Netherlands, a single
polarized ALOS-2/PALSAR-2 image acquired in Japan and an
Iceye X2 image acquired in Germany. In all cases, deSpeckNet
was able to effectively reduce speckle and restore the images in
high quality with respect to the state of the art.

Index Terms— Convolutional neural network (CNN), deep
learning (DL), speckle, synthetic aperture radar (SAR).

I. INTRODUCTION

THE recent availability of global Earth observation syn-
thetic aperture radar (SAR) data, for instance from the

Sentinel-1 SAR satellites, has been a game-changer for large
scale, all-weather, day/night monitoring of land surfaces.
However, the applicability of these data sets has been limited
by the presence of speckle. Speckle is inherent in all SAR
images as they are acquired by a coherent active microwave
imaging system. Speckle occurs when the backscattered signal
from independent targets is coherently superimposed within
each resolution cell. Depending on the size of the resolution
cell, the superimposition of these signals results in interference
whose effect is observed as speckle. Speckle is true scattering
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information collected from a target, but for image processing
purposes it is often considered as noise. To improve the
radiometric quality of SAR images before analysis, speckle
has to be reduced. In fact, speckle reduction has been an active
research area since the advent of airborne and spaceborne
imaging SAR sensors in the 1970s [1].

Earlier speckle filtering methods focused on spatially adap-
tive filters. Most of these were based on pixel intensity
statistics determined on a local neighborhood window. This
class of filters operated in a sliding window fashion, where the
pixel to be filtered is the center pixel in the moving window.
The boxcar filter [2] is the simplest spatial filter that estimates
the mean value of all the pixels in the moving window. The
boxcar filter was effective in reducing speckle in homoge-
neous regions at the cost of resolution. The Lee filter [3]
reduced the impact of the loss in resolution by estimating
the minimum mean square error (MSE) in a neighboring
window. The Frost filter [4] applied exponential weighting
and damping factor to control the amount of filtering in a low
pass filtering setting. These methods improved the preservation
of features in speckle filtering, however, they introduced
artifacts along feature boundaries. To overcome this problem,
Lee et al. [5] proposed to select similar pixels by using a series
of edge aligned nonrectangular windows, Vasile et al. [6]
used intensity-driven neighborhood region growing based on
the image intensity and Lee et al. [7] proposed selecting
similar neighboring pixels based on scattering characteristics.
In addition, Deledalle et al. [8] used nonlocal means with
weighted maximum likelihood estimation to reduce speckle,
and the 3-D block matching approach (BM3D) [9], which
groups image patches into 3-D arrays based on their similarity
and performs estimations into a 2-D image array from the
grouped blocks.

A second family of approaches exploits the wavelet
transform of the single look image in log form. Notable
works involve the wavelet Bayesian denoising that is intro-
duced in [10], based on Markov random fields (MRFs).
Mahdianpari et al. [11] introduced a SAR image despeck-
ling method that is based on adaptive Gauss-MRF. In [12],
a homomorphic wavelet maximum a posteriori (MAP) filter
was introduced improving the performance of the original
Gamma-MAP speckle filter.

A third family of approaches has recently started to attract
attention: thanks to the advent of powerful computation
capability, significant advances have been made using deep
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learning (DL) methods to perform image denoising tasks.
The most notable difference between these methods and those
described earlier is that DL based methods learn a suitable
denoising function based on pairs of noisy and clean images,
instead of using a predefined function. Chierchia et al. [13]
implemented SAR-convolutional neural network (CNN) by
adopting the concept of residual learning and deep CNN
proposed in [14] for additive white Gaussian noise reduction.
In SAR-CNN, the input SAR images are transformed to
the homomorphic form and used for training the SAR-CNN
network. The network uses a temporally averaged image as
a clean reference label, i.e., as a proxy of the speckle-free
reference image. Once the network is trained, the prediction
image is transformed back to the original image domain by
using an exponential function. Zhang et al. [15] used a dilated
residual network (DRN) using skip connections to train a
deep neural network for SAR image despeckling. The marked
difference between SAR-CNN and SAR-DRN was the usage
of real SAR images in SAR-CNN, whereas SAR-DRN: 1) was
trained on simulated images; 2) exploited residual connections;
and 3) processed images in their native form. Recent works
focused on combining loss functions with different purposes:
for example, Vitale et al. [16] uses simultaneously an MSE
loss that reconstructs the noise-free image and a Kulback–
Lieber loss to reconstruct the distribution of the speckle.
Furthermore, Pan et al. [17] deal with the unknown noise
statistics in SAR images by embedding a CNN model for
additive white Gaussian noise reduction with a Multichannel
Logarithm with Gaussian denoising (MuLoG) algorithm for
multiplicative noise, first introduced in [18].

In a supervised learning paradigm, the quality of the pre-
diction depends on the quality of the reference labels used for
training. For generating the reference labels, two approaches
have been followed in the literature. The first is the model-
based simulation from known speckle statistics [19]. This
approach relies on artificially simulating the speckle noise and
adding it to an optical image (referred to as a clean image) by
following an additive white Gaussian noise model [14] or a
multiplicative noise model [19]. This approach has three major
drawbacks.

1) It requires to assume an a priori speckle noise model
based on a Gamma probability distribution and a multi-
plicative noise model. This poses a problem for adapting
the network to data that does not follow the same
noise model. A good example for this is the differ-
ence in the noise statistics between SAR images with
different resolution, band, and landcover types, such
as the intensity images of high-resolution single look
Iceye X2 X-band SAR images and medium resolution
preprocessed and multilooked Sentinel-1 C-Band ground
range detected (GRD) images. Therefore, a model
trained on the single look SAR data would not neces-
sarily adapt to a preprocessed SAR image, as illustrated
in Fig. 1. Hence, it is imperative to design a model that
is robust to changes in speckle-noise statistics.

2) The artificial simulation and addition of noise to an opti-
cal image does not represent the true appearance of real
SAR images. This is exemplified in the representation

Fig. 1. When a machine learning method is applied to image denoising,
it implicitly learns a noise model from the training examples. If there is a
mismatch between this distribution and that of the test images the performance
can drop substantially. In this work, we propose a method to readjust the noise
model to the test images without any additional clean ground-truth images.

of deterministic scatterers in the SAR images. This
phenomenon is not captured by an artificial simulation
of noise in an optical image. Hence, a model trained on
these simulated images cannot recognize these features
when applied to a true SAR image.

3) The white noise property of the simulated images does
not represent the scatterer-dependent spatial distribution
of the noise in semiheterogeneous and heterogeneous
media. Hence, a network trained on homogeneous noise
statistics tends to over smooth features in heterogeneous
scenes, resulting in suboptimal results.

These problems led to the second approach: to use real SAR
images as labels. However, to obtain a noise-free training label
for real SAR images is impossible, because speckle is inherent
in all SAR images. One solution proposed in the literature
is selecting an area where there is a multitemporal image
stack with as little temporal change as possible and taking
a temporal average to estimate a noise-free image to be used
as a proxy for the reference label. This approach has been
demonstrated to provide good results [13]. However, when
the scene under investigation is nonstationary in time, taking
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Fig. 2. Two phases of deSpeckNet. (a) Model is first trained with an image for which a clean estimate exists (e.g., a temporal average). Three losses are
used: an MSE based loss LClean, LTV and LNoisy reconstruction losses, for the clean and the noisy (original) images, respectively. (b) When moving to an
image for which no clean reference is available, an MSE based loss LClean and a TV loss LTV on the clean image reconstruction and an MSE based loss
LNoisy for the noisy image reconstruction.

the temporal average will result in erroneous estimation of
the reference label, limiting the applicability of this method.
Hence, it is imperative to design a network that can generalize
well in areas where a temporal average label is not available.

In this article, we propose a DL pipeline named deSpeckNet
that can despeckle SAR images with unknown noise statistics.
Initially, deSpeckNet is trained using a temporally averaged
SAR image as a reference label. In this first step, the model
simultaneously estimates the noise-free image and the noise
component. In the second step, this model is subsequently
fine-tuned to fit any type of SAR image acquired over any
type of cover conditions without using any clean reference
labels, i.e., in an unsupervised way. To show the versatility
of the approach, the proposed method is evaluated on SAR
images acquired in Indonesia, the Democratic Republic of
Congo (DRC), The Netherlands, Japan, and Germany and
across several SAR sensor configurations involving different
noise models.

This article is organized as follows. Section II describes
the proposed methodology. The data sets used are described
in Section III. Section IV describes the experimental set-
tings, whereas Section V provides results and discussions.
Conclusions are presented in Section VI.

II. DESPECKNET

In a distributed medium, an SAR image with a fully devel-
oped speckle is assumed to follow a multiplicative speckle
model [20]:

Y = X N (1)

where Y is the observed SAR intensity image, X is the
underlying radar reflectivity of the scene, which can be viewed
as hypothetically noise free intensity image (since SAR images
cannot exist without speckle) and N is the speckle image. The
random speckle noise follows a Gamma probability density
function:

p(N |L) = 1

�(L)
L L N L−1e−N L , N ≥ 0, L ≥ 1 (2)

where � is a Gamma function and L is interpreted as the num-
ber of looks of the SAR image. For single look SAR image
(L = 1), (2) simplifies to an exponential distribution. If the
SAR image is in the amplitude domain, N is characterized by
a Nakagami probability density function

p(N |L) = 1

�(L)
2L L N2L−1eN 2−L , N ≥ 0, L ≥ 1. (3)

In the single look amplitude case, (3) simplifies to the Rayleigh
probability density function.

The proposed DL-based despeckling method (deSpeckNet)
consists of two phases: the first follows a supervised learning
paradigm by using a temporally averaged SAR image as a
reference label. The second phase consists of unsupervised
fine-tuning that learns to adapt to a new noise distribution.
To this end, we design the architecture of deSpeckNet to
follow the multiplicative noise model defined in (1).

A. Architecture

We use a Siamese architecture to estimate the noise-free
image (X̂) and the estimated noise (N̂ ) separately (Fig. 2).
We adopted this architecture to provide the possibility to tune
the network to the noise statistics of other SAR images from
a different region or from a different sensor. The two identical
branches estimate the clean image X̂ (FCNclean) and the noise
N̂ (FCNnoise). With those two components, we reconstruct the
input noisy image (Ŷ ) using (1).

Both (FCNnoise) and (FCNclean) consist of four main building
blocks namely convolution [21], batch normalization [22],
nonlinear activation [23] and loss function. The architecture
for deSpeckNet does not use any pooling layers to avoid
using upsampling layers to reconstruct the images to their
original sizes [19], as these lay additional computational
burden. Instead, we opted to maintain the sizes of feature
maps in the intermediate layers and increase the depth of the
network.

To train the network, we apply three types of loss functions,
the MSE-based LClean, LNoisy losses, and a total variation (TV)

Authorized licensed use limited to: Adugna Mullissa. Downloaded on December 19,2020 at 06:21:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

loss LTV, combined as

Loss = LClean + LNoisy + LTV. (4)

In the first, supervised training phase [Fig. 2(a)], we apply
an MSE-based LClean loss between the clean label X and
reconstructed clean image X̂

LClean(X, X̂) = μ
1

n

n∑
i=1

(Xi − X̂ i )
2 (5)

where n is the number of pixels in a training patch and μ is the
weight assigned to the loss. Once N̂ and X̂ are reconstructed in
the network, we apply an elementwise multiplication following
the multiplicative noise model used for SAR images (1). The
reconstructed noisy image Ŷ is finally compared to the input
noisy SAR image Y using another MSE loss, LNoisy (Fig. 2)

LNoisy(Y, Ŷ) = ξ
1

n

n∑
i=1

(Yi − Ŷi )
2. (6)

Here, ξ is the weight assigned to the loss. The usage of
this second loss function is important for providing a learning
signal in the second phase, when no temporal average is
available. This approach makes deSpeckNet different from the
other DL based approaches for denoising SAR images.

In the second unsupervised fine-tuning phase [Fig. 2(b)],
since a temporally averaged image is assumed to be unavail-
able, we use the input noisy image as a reference label and
down-weight the LClean loss by a small value μ2

LClean,2(Y, X̂) = μ2
1

n

n∑
i=1

(Yi − X̂ i )
2. (7)

This has the effect of maintaining the solution close to the
original image so that spatial structures are preserved while
the other losses smooth (LTV) and denoise (LNoisy).

For smoothing, we used a TV [24] loss LTV in order to
encode a smoothness prior on the clean image

LTV(X̂) = λ
∑

i

|∇ X̂ i |. (8)

The LTV loss minimizes the absolute differences between
neighboring pixel-values, enforcing smoothness while preserv-
ing edges.

III. DATA SETS

To evaluate the performance of deSpeckNet we used a
Sentinel-1 GRD image time series with 23 images acquired
over Pegunungan Barisan, Sumatra, Indonesia, to synthe-
size the reference labels and train the initial model. Since
deSpeckNet is designed to adjust to different noise levels in
different SAR images, the decision to train the model based
on Sentinel-1 GRD is based on convenience for synthesizing
a reference label image with a fewer number of images.
To demonstrate the performance of deSpeckNet in despeckling
SAR images without a temporally averaged label, and obtained
using different sensors and across multiple regions, we fine-
tune the model on the following (Fig. 3).

1) Images from different geographical regions and land-
cover types, we used three study areas, each are com-
posed of a single Sentinel-1 GRD image acquired over
the Kindu area in the DRC, the city of Utrecht and the
region of Flevoland in The Netherlands, respectively.

2) Images from different sensors and landcover types.
We used an ALOS-2/PALSAR-2 image acquired over
Fujiyama, Japan, and an Iceye X2 image acquired near
the city of Kiel in Germany.

A. Sentinel-1 Data

The Sentinel-1 GRD images used in the experiments are
acquired in the interferometric wide (IW) swath mode with a
technique known as terrain observation with progressive scan
(TOPS). They were acquired in C-band for both single and
dual polarization. The GRD images were multilooked to five
looks in the range direction and projected to ground range
using an Earth ellipsoid model by the data provider. The
Sentinel-1 data sets used in this article are acquired from four
regions (Table I).

1) Indonesia: The training image for deSpeckNet was
acquired over the Pegunungan Barisan area in Sumatra,
Indonesia. It consisted of an image with 1682 × 2300
pixels. The multitemporal images used to synthesize
the training labels were acquired from July 5, 2018,
to April 19, 2019. To assess the performance of deSpeck-
Net in tuning the network for a different region, we used
a monotemporal images acquired on July 5, 2017. The
area is mostly covered by oil palm plantations and
forests. There are hardly any urban region within the
area.

2) DRC: To assess the performance of deSpeckNet in
tuning the network for a different region, we used a
Sentinel-1 image acquired over Kindu in the DRC. The
image was acquired on August 26, 2017, and it consists
of an image with 1001 × 1001 pixels. This test area is
mostly covered by primary forest with some bare soil.
To synthesize the clean reference label for assessing the
performance of deSpeckNet, we used 29 multitemporal
images acquired over the same area from August 26,
2017, to August 9, 2018.

3) Netherlands-Utrecht: To assess the performance of
deSpeckNet in tuning the network for a different
region and landcover type, we used a Sentinel-1 image
acquired over the city of Utrecht in The Netherlands.
The image scene is dominated by urban areas. The
images were acquired on October 11, 2018, consisting
of 1360 × 2087 pixels. These images were selected to
demonstrate the generalization capability of deSpeckNet
in urban regions. We also used 22 multitemporal images
acquired from October 11, 2018, to July 2, 2019, to eval-
uate the performance of deSpeckNet quantitatively.

4) Netherlands-Flevoland: To demonstrate the performance
of deSpeckNet in a temporally unstable region, we used
a Sentinel-1 image acquired over the Dutch region of
Flevoland. The image was acquired on October 11, 2018,
and is 1821 × 1204 pixels wide. Since it is an agricul-
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TABLE I

ACQUISITION PARAMETERS FOR THE SENTINEL-1 TRAINING AND TEST IMAGES

TABLE II

ACQUISITION PARAMETERS FOR THE ALOS-2-PALSAR-2
AND ICEYE X-2 TEST IMAGES

tural area, the temporally stable backscatter assumption
could not be fulfilled to synthesize the reference labels
and this case is assessed only qualitatively.

B. ALOS-2/PALSAR-2 Image

The ALOS2-PALSAR2 image is acquired in stripmap mode
and is also multilooked two times in the azimuth direction
and is projected to ground range using an Earth ellipsoid
model by the data provider. The ALOS-2/PALSAR-2 sen-
sor acquires data in L-band for both single, dual and quad
polarization data (Table II). The monotemporal test image is
acquired over the Fujiyama area in Japan on June 06, 2014.
It consists of an image with 1060 × 1601 pixels. The area
is a natural environment covered by forests and some bare
areas. We selected this sensor and image to demonstrate the
performance of deSpeckNet in adapting to a new geographic
region and new sensor. It was not possible to freely acquire
multitemporal images to synthesize the temporally averaged
labels for quality evaluation, as it is a commercial sensor.
Therefore, and as in the Flevoland case, we assess the results
only qualitatively.

C. Iceye X2 Image

The Iceye X2 sensor acquires data in X-band for single
polarization data in Strip map mode (Table II). The image is
acquired near the city of Kiel in Northern Germany and is
1287 × 958 pixels. The area is a mixed scene of agricultural
and urban regions. We selected this region to demonstrate the
performance of deSpeckNet when applied to a high resolu-
tion image in a different region and landcover type. In this
scene, it was also not possible to freely acquire multitemporal

images to synthesize the temporally averaged labels for quality
evaluation, as it is a commercial sensor.

IV. EXPERIMENTAL SETUP

A. Label

We use the reference label preparation method suggested
in [13] that uses a large stack of multitemporal images to create
the label clean image. Since this reference label is prepared
from real SAR images, it represents the properties of real SAR
features. To achieve the best results, the patches selected for
training have to be stable in time, i.e., the scene must not have
large temporal variation. This can be ensured by using the
standard deviation of intensity for each pixel in the image as

Z =
√∑N

i=1(xi − x̃)2

N − 1
. (9)

Here, x is the pixel intensity, x̃ is the mean of the temporal
pixel intensity value, N is the number of images in the
temporal stack. If the standard deviation of pixel intensity
values over the period is above a threshold (ν = 0.1), that
pixel in the temporally averaged image is masked. In places
where we have a low standard deviation below a predefined
threshold we can apply a temporal averaging on the image as

x =

⎧⎪⎨
⎪⎩

1

N

N∑
i=1

xi , if Z ≤ 0.1

0, otherwise.

(10)

In this way, we can prepare a temporal average of patches
to be used as reference labels, whose number is detailed
in Table I. In cases where the number of available multitempo-
ral images is limited, a spatial multilooking is recommended
to suppress residual speckle noise in the synthesized reference
label image [25]. In our experiments, we have used 23 to 28
multitemporal Sentinel-1 GRD images that were originally
multilooked five times, so we did not perform additional
multilooking to synthesize the reference label images.

B. Training

To investigate the performance of deSpeckNet, we trained
the network in a temporally stationary scene (S1-Indonesia)
and to investigate the tuning capability of the designed
architecture we applied it to an image acquired in different
geographic regions and landcover types and sensors. In both
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Fig. 3. Input images used to test deSpeckNet. The area in the red and green boxes was used for qualitative comparison of the methods, whereas the area
in blue was used to estimate quality metrics such as ENL and coefficient of variation (Cx). (a) Indonesia. (b) DRC. (c) The Netherlands-Utrecht. (d) Japan.
(e) The Netherlands-Flevoland. (f) Germany. All the test images used multilooked images except the Iceye image in Germany which was a single look image.

TABLE III

ARCHITECTURE OF THE FCN BLOCKS OF DESPECKNET

FCNclean and FCNnoise, we used 17 blocks consisting of
convolution, batch normalization and nonlinear activation,
determined empirically. The details of each block are shown
in Table III.

To train deSpeckNet in the initial phase, we prepared the
input noisy images and their corresponding reference labels
into 40 × 40 patches. We created an overall 117 888 patches
for training. Since, deSpeckNet is designed to fine-tune images
with different noise statistics than what it was trained on, there
is no need for a training set that represents well the test set,
and thus, the diversity of the training set becomes less of a
limiting factor. We used a batch size of 128 so at every epoch
the network used 921 iterations. We trained the network for
a total of 30 epochs using a learning rate between 10−3 and
10−4 by decreasing the learning rate by 0.002 every 10 epochs.
In the initial training phase, we set the weight (λ) of the LTV

to zero and the LClean was given a μ of 1 and ξ of LNoisy

was set to 0.01. To fine-tune the network for new regions or
a new set of data we used the same learning rate as the initial

training phase for one epoch. In the fine-tuning phase, for the
Sentinel-1 GRD images we set the λ of the LTV to 0 and the
LClean was given a μ of 10−2 and ξ of LNoisy was set to 1.
For single look data sets such as the Iceye X2 images we set
the λ of the LTV to 10−4 and the LClean was given a μ of
10−2 and ξ of LNoisy was set to 1. In both cases, we used
an Adam optimizer [26] whose decay rate was fixed at 0.9.
We used early stopping in fine-tuning the model to reconstruct
the new images without reference labels. To properly evaluate
the performance of the network we trained the network ten
times from random seeds using the improved Xavier weight
initialization [27].

To train deSpeckNet, we used the MatConvNet frame-
work [28] in a MATLAB 2018a environment run on a Linux
operating system with Intel Xeon(R) E-2176M CPU and
Quadro P2000 GPU.

C. Quality Metrics

In test areas where we have multitemporal images and where
the assumption of temporal stationarity was fulfilled, we used
the temporally averaged images as validation ground-truth
images to derive quality metrics. The quality metrics used
to evaluate the performance of deSpeckNet in the presence
of full reference label image are the peak signal to noise
ratio (PSNR), structural similarity index (SSIM), despeckling
gain (DG), edge preservation index (EPI) and the strong
scatterer preservation index (CNN). PSNR estimates the quality
of the reconstructed noise-free image resemblance to the
reference data, in this case, the temporally averaged Sentinel-1

Authorized licensed use limited to: Adugna Mullissa. Downloaded on December 19,2020 at 06:21:38 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MULLISSA et al.: deSpeckNet: GENERALIZING DL-BASED SAR IMAGE DESPECKLING 7

image as

PSNR = 20 log10

(
X̂max√
MSE

)
. (11)

Here, X̂max is the maximum power given as 255. We do this by
converting the 32-bit data to 8-bit data. The MSE is computed
between the label (X) and the reconstructed images (X̂) given
as MSE = E[(X̂ − X)2].

SSIM estimates the structural similarity between the
label (X) and the reconstructed image (X̂) as

SSIM(X̂ , X) = (2μX̂μX + c1)(2σX̂ X + c2)(
μ2

X̂
+ μ2

X + c1
)(

σ 2
X̂

+ σ 2
X + c2

) (12)

where μX is the mean of image X and σX is its standard
deviation.

The DG estimates the speckle rejection ability of a partic-
ular despeckling method [29]. Therefore, a large DG value
indicates a higher speckle removal ability. DG is estimated as
follows:

DG = 10 log10

(
MSE(X̂ , Y )

MSE(X̂ , X)

)
. (13)

To evaluate edge preservation, we use the EPI [30], [31].
EPI is derived by first defining the gradient preservation (GP)
index, which is the ratio between the gradient values in the
filtered intensity image (X̂) and the gradient of the reference
image (X)

GP =
∑∇X̂∑∇X

. (14)

Here, ∇ is the Sobel gradient operator. EPI is calculated by
projecting the GP values in the interval [0, 1] using a triangular
equation as

EPI =
{

1 − |1 − GP|, if GP < 2

0, otherwise.
(15)

The strong scatterer preservation index (CNN) estimates the
strong scatterer preservation ability of a particular filter [29].
Similarly, a higher CNN indicates a higher preservation of a
strong scatterer. CNN is given as

CNN = 10 log10
XCF

XNN
(16)

where XCF is the intensity observed at the strong scatterer
site and XNN is the average intensity of the surrounding eight
pixels.

In test regions where a temporal average image is not
available, as a metric for quality of performance, we used
visual inspection as a qualitative measure and the equivalent
number of looks (ENL) and the coefficient of variation (Cx )
derived in a homogeneous region as a quantitative measure for
comparison. The ENL is derived by taking the ratio between
the mean square (μ2) and variance (σ 2) of a homogeneous
region in the image as

ENL = μ2
X̂

σ 2
X̂

(17)

whereas Cx is a measure for the preservation of texture in
the filtered image and is derived in a homogeneous region
by taking the ratio of the standard deviation with the mean
intensity, given as

Cx = σX̂

μX̂

. (18)

As can be seen from (17) in uniform regions the filter that
achieves the smallest variance in pixel intensities, i.e., best
despeckling performance will result in the highest ENL and
lowest Cx values.

V. RESULTS AND DISCUSSION

To assess the performance of deSpeckNet, we compared it
with the improved Lee-sigma filter [32], SAR-BM3D [9],
an unsupervised method based on block-matching, and SAR-
CNN [13], a supervised CNN-based method, both qualita-
tively and quantitatively. We selected SAR-CNN because it
is designed to be trained on real SAR images as opposed to
the methods trained on simulated noise and optical images.

A. Evaluation on the Same Region Used for Training

In the Indonesia image, a forested landscape for which a
temporal average is available as clean reference, improved Lee
sigma filter failed to remove speckle and to preserve the subtle
features in the image. SAR-BM3D, being an unsupervised
method that does not make use of the reference image and
benefits from highly structured elements in the image to per-
form nonlocal matching, performed suboptimally in preserving
edges and removing noise from homogeneous regions due
to the lack of strong structures. deSpeckNet and SAR-CNN
performed similarly since they are both trained with super-
vision on this image. Both are better than SAR-BM3D in
preserving features and removing noise from homogeneous
regions (Fig. 4 and Table IV).

B. Tests on Other Sentinel Scenes

1) Qualitative Results: On the remaining images no refer-
ence clean image is used to train SAR-CNN nor deSpeckNet.
In the case of SAR-CNN, we apply the model that was trained
on the Indonesia image [two image subset are presented
in (Fig. 4)]. The Lee sigma filter and SAR-BM3D, being
unsupervised, work on the same setting as in the Indonesia
image. On the DRC image (Fig. 5), which is similar in
nature to the one over Indonesia, both the improved Lee
sigma, SAR-BM3D still perform suboptimally in preserving
features and removing noise from homogeneous regions or
preserving subtle features. SAR-CNN filtered the DRC image
using the noise model learned from the Indonesia image.
Although both are obtained with Sentinel-1, the differences
in the noise distribution are large enough to result in blurred
edges and unevenly filtered noise from homogeneous regions.
deSpeckNet, however, was able to be tuned to the DRC image
without using any new clean reference labels [Fig. 5(e)],
removing much of the noise from homogeneous regions while
preserving the edges between regions.
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Fig. 4. Despeckling result for different baseline methods and deSpeckNet in the Indonesia Sentinel-1 image. We show a 300 × 300 and 400 × 400
image patch for (a) input noisy image, (b) Lee-sigma, (c) SAR-BM3D, (d) SAR-CNN, and (e) deSpeckNet. (f) Temporal average image used to estimate
PSNR/SSIM/DG. Some residual noise can be observed in the temporal average image because we averaged 23 images. However, due to the MSE loss function,
its effect on the training performance is negligible.

TABLE IV

QUANTITATIVE QUALITY METRICS FOR ALL THE TEST IMAGES. SAR-CNN (*TEST) REFERS TO SAR-CNN FINE TUNED ON A TEMPORALLY
AVERAGED IMAGE FOR THE TARGET SCENE AND IT IS USED AS AN UPPER BOUND. ALL RESULTS REPORT AN AVERAGE OVER TEN

RUNS AND THE CORRESPONDING STANDARD DEVIATION. THE LEE SIGMA AND SAR-BM3D ARE NOT

INITIALIZED RANDOMLY. HENCE, THE UNCERTAINTIES ARE NOT SHOWN

In the Netherlands-Utrecht image (Fig. 6), the improved Lee
sigma filter overfiltered and distorted all features in the image.
Whereas, SAR-BM3D performed better than in the previous
images as the image contrast was higher than the Indonesia and
DRC case. However, it suffered from overfiltering, resulting
in the smoothing out of subtle features. SAR-CNN resulted in
suboptimal results as it failed to adequately remove the noise
from homogeneous regions and improve the overall signal to
noise ratio of the image. deSpeckNet succeeded in preserving

features and adequately removing noise from homogeneous
regions [Fig. 6(d)] when compared to SAR-CNN. The advan-
tage of deSpeckNet was also demonstrated when applied to
the image in the Netherlands-Flevoland. Here, the improved
Lee sigma filter overfiltered the scene resulting in blurred
features and SAR-BM3D was not able to remove the speckle
maintaining the noisy appearance, whereas SAR-CNN indis-
criminately filtered the image distorting many of the image
features. On the contrary, deSpeckNet removed the speckle
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Fig. 5. Despeckled images in the DRC Sentinel-1 image. We show a 200 × 200 image patch for (a) input noisy image, (b) Lee-sigma, (c) SAR-BM3D,
(d) SAR-CNN, and (e) deSpeckNet. (f) Temporal average image used to estimate PSNR/SSIM/DG. This area is selected to demonstrate the generalization
capability of the model in a similar landcover types from what it was trained on but different geographic region.

Fig. 6. Despeckled images in the Netherlands-Utrecht Sentinel-1 image. We show a 200×200 tile for (a) input noisy image, (b) Lee-sigma, (c) SAR-BM3D,
(d) SAR-CNN, and (e) deSpeckNet. (f) Temporal average image used to estimate PSNR/SSIM/DG. This area is selected to demonstrate the scaleability of the
model in a similar sensor type from what it was trained on but different geographical regions and landcover types. The temporal average image displayed is
used only for deriving the quality metrics. [In Fig. 6(f), for visualization purposes we did not mask pixels that did not fulfill the temporal standard deviation
criteria.]

Fig. 7. Despeckled images in the Netherlands-Flevoland Sentinel-1 image. We show a 350 × 350 image patch for (a) input noisy image, (b) Lee-sigma,
(c) SAR-BM3D, (d) SAR-CNN, and (e) deSpeckNet. This area is selected to demonstrate the generalization capability of the model in a similar sensor type
from what it was trained on but different landcover type.

from homogeneous regions while maintaining subtle features
in the image [Fig. 7(e)].

2) Quantitative Results: The capability of deSpeckNet is
further exemplified by the improvement of the quantitative
metrics of PSNR, SSIM, DG, EPI and ENL when compared
with the improved Lee sigma, SAR-BM3D, and SAR-CNN.
The ENL is estimated in a minimum window size of
25 × 55 pixel window for the Flevoland test area and a
maximum of 80 × 115 pixel window for the Japan test area
Fig. 3. In the Indonesia and DRC test areas deSpeckNet
achieved the highest PSNR, SSIM, DG, EPI, and ENL values
than SAR-BM3D and SAR-CNN (Table IV). This trend was
slightly changed when comparing the quantitative results from
the Netherlands-Utrecht image. Here, SAR-BM3D achieved a
slightly higher EPI and CNN when compared with deSpeckNet.
This is due to the fact that SAR-BM3D is better adapted to
highly structured images with distinct strong scatterers, such
as this urban scene. However, deSpeckNet results in a higher

PSNR, SSIM and DG value than SAR-BM3D, which suggests
that the latter might be incurring in inconsistencies in filtering,
to which the localized EPI and CNN metric is less sensitive.
SAR-CNN achieved overall low values in all compared metrics
due to its inability to adapt to new noise distributions. A sim-
ilar trend was also observed in the Netherlands-Flevoland
image (Table IV), where deSpeckNet achieved significantly
higher ENL values and the smallest Cx than all the other
baseline methods. The improved Lee sigma filter achieved
the lowest PSNR, SSIM, DG, EPI, and ENL values in all
test images showing a sharp contrast between the traditional
localized speckle filters and machine learning-based filters.
To establish the upper bound for tuning, we did a super-
vised tuning of SAR-CNN in the DRC and Netherlands-
Utrecht image by using the temporally averaged image. The
SAR-CNN supervised fine-tuning achieved a mean PSNR
of 39.91, SSIM of 0.92 and DG of 5.82 in the DRC and
a mean PSNR of 29.97, SSIM of 0.85 and DG of 1.72 in
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Fig. 8. Despeckled images in the Japan ALOS2-PALSAR2 image. We show two 200 × 200 image patches for (a) input noisy image, (b) Lee-sigma,
(c) SAR-BM3D, (d) SAR-CNN, and (e) deSpeckNet. This area is selected to demonstrate the generalization capability of the model in a similar landcover
types from what it was trained on but different sensor.

Fig. 9. Despeckled images in the Kiel Iceye x-2 image. We show a 350 × 350 image patch for (a) input noisy image, (b) Lee-sigma, (c) SAR-BM3D,
(d) SAR-CNN, and (e) deSpeckNet. This area and data type is selected to demonstrate the generalization capability of the model in a different sensor types,
geographic region and landcover type.

the Netherlands-Utrecht image (Table IV), which was slightly
higher than the values achieved by deSpeckNet. Note that these
results show that deSpeckNet, ever without using supervised
tuning on the test image, is able to reach an equivalent
performance of a network tuned in a clean test image, which,
the more often, is not available.

C. Tests on Other Sensors

To further demonstrate the capability of deSpeckNet in
generalizing to new sensors, we used the ALOS-2 PALSAR-2
image acquired in Japan. Visually the performance of
SAR-BM3D was better than the Indonesia and DRC images,
due to sharper contrast and structure in the scene. However,
there was a severe loss of resolution and texture in the image
that resulted from overfiltering and some spurious details were
hallucinated by the filter as a result of destruction of the texture
in the image. The improved Lee sigma filter blurred all features
achieving suboptimal results and SAR-CNN had a suboptimal
performance due to the difference in the noise distribution.
In contrast, deSpeckNet was able to improve the SAR signal
to noise ratio while preserving subtle features in the image
(Fig. 8). Same conclusions were reached when considering
to the high resolution Iceye X2 image in Germany. In this
case also, deSpeckNet performed better at removing noise

from homogeneous regions (Table IV) while preserving subtle
features in the image (Fig. 9).

D. Noise Estimation

One of the advantages of deSpeckNet is the estimation of
the speckle noise distribution. This plays an important role
in tuning the model to a different set of images. This can
be confirmed by investigating the probability density function
of the estimated noise along with the parameters that define
the noise probability density function. We do so by fitting
a distribution (2) to the estimated noise image. As can be
observed from (Fig. 10), the probability density function of the
noise follows a Gamma distribution for all test areas except
the Iceye Germany test area. Here, as opposed to the other
test case we used a single look SAR image hence the speckle
noise distribution was not a Gamma distribution as the other
test cases but an exponential pdf and deSpeckNet was able
to estimate the noise pdf accurately Fig. 10(f). In addition,
we also compared the reference image ratio (Y/X with the
ratio image (Y/X̂ ) estimated by deSpeckNet and the other
methods (Fig. 11). From Fig. 11, we can clearly see that
deSpeckNet inherently have a limitation in yielding uncor-
related speckle in the image, which is manifested by residual
image structures in the ratio images. These artifacts in the ratio
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Fig. 10. Noise distribution estimated by deSpeckNet and the speckle noise derived from the reference data for each of the test areas. (a) and (b) DRC.
(c) The Netherlands-Utrecht. (d) Japan. (e) The Netherlands-Flevoland. (f) Germany. All the test areas were from multilooked images except the Iceye image
in Germany which was a single look image.

TABLE V

COMPARISON OF MEAN (MOR) AND VARIANCE (VOR) FOR THE RATIO IMAGE (Y/X̂ ) SYNTHESIZED BY THE DIFFERENT METHODS AND THE

REFERENCE RATIO IMAGE (Y/X ) THAT IS SYNTHESIZED FROM THE TEMPORALLY AVERAGED REFERENCE IMAGE

images are the result of using input images as a reference label
in phase II to preserve features in the filtered output. To get a
deeper insight into the performance of the methods we used
the mean of ratio (MoR) and variance of ratio (VoR) metric
to compare the performance of the baseline methods. In the
Indonesia, DRC and Netherlands-Utrecht images, deSpeckNet
provides the closest estimate of MoR and VoR estimates to
that of the reference ratio image derived from the temporally
averaged reference image X (Table V).

E. Computational Considerations

The overall computational cost of deSpeckNet when training
the initial model for 30 epochs was 31.8 h. This was twice the
computational burden of SAR-CNN, due to the duplicity of
the CNN blocks in the Siamese architecture. In contrast,

SAR-BM3D took 16 min to denoise the input image in
Indonesia. However, when tuning the model to new images the
model was able to be tuned within one epoch for the DRC and
Japan image and two epochs for the Netherlands image. This
amounted to 7.7 × 10−4 seconds per pixel to tune the model,
as the computational burden depends on the dimension of the
input image. When testing the model on an image it had a
computational burden of 2.69 × 10−5 s per pixel. All training
was performed on GPU whereas, due to memory limitations,
all testing was performed using CPU.

Even though the computational cost of deSpeckNet was
relatively heavy in the initial training phase, it was able to be
tuned to new images with a relatively small amount of time.
This makes deSpeckNet particularly desirable for operational
applications that require fast response such as near-real time
change monitoring applications.
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Fig. 11. Comparison of ratio images (Y/X̂) for (Top row) Improved Lee Sigma, (Bottom row) SAR-BM3D, SAR-CNN, deSpeckNet, and reference ratio
(Y/X). (a) Indonesia, (b) Congo, (c) The Netherlands-Utrecht, (d) The Netherlands-Flevoland, (e) Japan, and (f) Germany. Since no clean image is available
for (d)–(f), the last row is empty for those images. To ease visual comparison, the ratio images were rescaled to the range [0.5 1.5].

Fig. 12. Comparison of processing output from (Top) phase one only and (Bottom) phase two only. (a) Indonesia. (b) Congo. (c) The Netherlands-Utrecht.
(d) The Netherlands-Flevoland. (e) Japan. (f) Germany.

F. Ablation Study
In this section, we study the importance of the build-

ing blocks of the proposed architecture. We first show the

necessity of the two phases, the training on the stack of
multitemporal images (phase 1) and the unsupervised fine-
tuning on the test image (phase 2), with respect to the full
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Fig. 13. Effect of TV loss in tuning a single look Iceye image. We show a 350 × 350 image patch for (a) tuning with λ = 10−3, ENL = 182.38, (b) tuning
with λ = 10−5, ENL = 165.7, (c) tuning with λ = 10−6, ENL = 164.11, and (d) tuning with λ = 0, ENL = 98.66. Tuning is done in one epoch.

TABLE VI

RESULTS OF DESPECKNET, WHEN USING (TOP) PHASE 1 ONLY, (MIDDLE) PHASE 2 ONLY, AND (BOTTOM) BOTH PHASES 1 AND 2 (PROPOSED METHOD)

TABLE VII

PSNR, SSIM, EPI AND ENL COMPUTED USING DIFFERENT WEIGHTS FOR THE RESPECTIVE LOSS FUNCTIONS FOR TRAINING THE NETWORK

USING THE IMAGE IN INDONESIA. HERE μ IS THE WEIGHT OF LClean , λ IS THE WEIGHT OF LTV AND ξ IS THE WEIGHT OF LNoisy

model using both (Table VI and Fig. 12). From these results,
its clear that the combination of the two phases is crucial
to achieving higher performance in despeckling. Next, we
performed a series of ablation studies focused on the loss
functions. As shown in (Tables VII and VIII) the usage of LTV

in the initial training phase was not important to remove some
artifacts and blurring effects found in the reconstructed image
when the LClean loss is applied (Table VII). However, when
tuning the model on noisier, single look images, its presence
was important to further smoothen noisy homogenous regions

in the image to be tuned by forcing the FCNnoise part of
the network in estimating the speckle component in the
image. This is exemplified by the increase in the ENL when
applying the TV loss on an Iceye single look image (Fig. 13).
To evaluate the necessity of applying a loss function in the
FCNclean side of the network, we removed both the LClean and
the LTV to train the network but it failed to achieve the output
demonstrated when using, only the LClean loss.

In general, deSpeckNet achieved success in generalizing to
different areas. It achieved higher success when applied to an
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TABLE VIII

PSNR, SSIM, DG, EPI, ENL AND CX COMPUTED USING DIFFERENT WEIGHTS FOR THE RESPECTIVE LOSS FUNCTIONS FOR TUNING THE NETWORK
USING THE TEST IMAGE IN THE DRC. HERE μ IS THE WEIGHT OF LClean , λ IS THE WEIGHT OF LTV AND ξ IS THE WEIGHT OF LNoisy

image in both rural and urban scenes. This is attributed to the
multiplicative model assumption enforced in deSpeckNet and
the use of the input noisy image as a reference with a small
weight.

VI. CONCLUSION

We have presented a method, deSpeckNet, that is able to
learn a speckle noise model suitable for effective despeckling
without the need of any reference clean image nor any assump-
tions on the noise distribution other than the multiplicative
noise model. Our experiments on a wide variety of SAR
images, obtained with different sensors and over different
regions, confirm the robustness of deSpeckNet.

The proposed deSpeckNet proved to be effective in reducing
speckle noise while preserving the image quality with minimal
unsupervised fine-tuning. It was also able to adapt to all the
tested SAR images regardless of resolution, acquisition para-
meters or geographical region, providing better despeckling
results than state-of-the-art methods and equaling performance
obtained by CNN models optimized with temporally averaged
images, generally unavailable, at test time. For future work,
we plan on improving the loss functions that encode the
assumption on the clean image to improve the performance
of deSpeckNet in mixed urban and rural scenes where both
strong deterministic and distributed targets exist.
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