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Abstract— A polarimetric synthetic aperture radar (PolSAR)
sensor is able to collect images in different polarization states,
making it a rich source of information for target characterization.
PolSAR images are inherently affected by speckle. Therefore,
before deriving ad hoc products from the data, the polarimetric
covariance matrix needs to be estimated by reducing speckle.
In recent years, deep learning-based despeckling methods have
started to evolve from single-channel SAR images to PolSAR
images. To this aim, deep learning-based approaches separate the
real and imaginary components of the complex-valued covariance
matrix and use them as independent channels in standard
convolutional neural networks (CNNs). However, this approach
neglects the mathematical relationship that exists between the
real and imaginary components, resulting in suboptimal output.
Here, we propose a multistream complex-valued fully convolu-
tional network (FCN) (CV-deSpeckNet1) to reduce speckle and
effectively estimate the PolSAR covariance matrix. To evaluate
the performance of CV-deSpeckNet, we used Sentinel-1 dual
polarimetric SAR images to compare against its real-valued
counterpart that separates the real and imaginary parts of the
complex covariance matrix. CV-deSpeckNet was also compared
against the state of the art PolSAR despeckling methods. The
results show that CV-deSpeckNet was able to be trained with a
fewer number of samples, has a higher generalization capability,
and resulted in higher accuracy than its real-valued counterpart
and state-of-the-art PolSAR despeckling methods. These results
showcase the potential of complex-valued deep learning for
PolSAR despeckling.

Index Terms— Complex-valued, convolutional neural network
(CNN), deep learning, polarimetric SAR (PolSAR), speckle.

I. INTRODUCTION

THE advent of freely available multiple polarization SAR
images, such as Sentinel-1 dual polarimetric SAR (Pol-

SAR) images, has been a game-changer for all-weather
day/night geospatial applications. However, the exploitation
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of these data sets is complicated by the presence of speckle.
Speckle is the effect that occurs from the interference
of backscattered signals from multiple individual scatterers
within a resolution cell. In polarimetric SAR, due to the
presence of speckle, the main interest is not in the scattering
matrix itself, but the estimated covariance matrix determines
the randomness of the acquired SAR data vector. The covari-
ance matrix defines the polarimetric properties of the image
and has to be estimated first to derive ad hoc products, such
as target decomposition and terrain classification [1].

Most polarimetric covariance matrix estimation methods
proposed in the literature focus on spatially adaptive fil-
ters defined in a neighborhood window [1], [2]. Therefore,
the main challenge is selecting which pixels to average
together and how to assign the weight to each pixel. Blind low-
pass filters, such as the boxcar filters, are ineffective in pre-
serving resolution, edges, and point scatterers in the PolSAR
data. Lee et al. [1] improved these drawbacks by minimizing
the mean square error of the trace of the covariance matrix
in a series of edge-aligned windows to filter elements of the
covariance matrix. In [3] and [4], the scattering mechanisms
are determined on a pixel-to-pixel basis to establish similarity.
Lee and Pottier [5] addressed the bias issue observed with
previous filters by redefining the range based on a speckle
probability function. Deladalle et al. [6] used a nonlocal means
approach to accurately estimate the covariance matrix in a
heterogeneous medium without losing resolution. Recently,
Deledalle et al. [7] used a homomorphic approach to convert
the PolSAR signal to an additive noise model that embeds
a Gaussian denoiser to effectively filter speckle and estimate
PolSAR covariance matrix in a heterogeneous medium.

Recently, deep learning-based single-polarization SAR
image despeckling techniques have gained attention [8], [9].
These methods operate by feeding pairs of noisy and clean
images in the deep learning network so that the network learns
a nonlinear function to transform the noisy input images to the
filtered output. Deep learning-based polarimetric covariance
matrix estimation is understudied compared to the single-
channel SAR despeckling, and only a few studies applied
convolutional neural network (CNN) to despeckle PolSAR
data. Pan et al. [10] used a pretrained Gaussian denoising
network to filter fully polarimetric SAR data and reported
promising results. However, these methods did not consider
the complex-valued nature of the covariance matrix. They
separated the real and imaginary parts of the off-diagonal
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elements of the covariance matrix as real channels, thereby
neglecting the mathematical relationship that existed between
them.

To overcome these limitations and learn a more robust
feature representation, complex-valued neural networks offer
a potential solution. Initial works on complex-valued neural
networks focused on leveraging the properties of complex
numbers to learn a more robust transformation functions than
real-valued networks [11], [12]. However, these networks
provided the theoretical basis for complex-valued neural net-
works and did not see many real-world applications. Recent
complex-valued deep learning frameworks focused on replicat-
ing the success of real-valued CNN. Therefore, these networks
maintained the standard deep neural network architecture but
redesigned the building blocks to accommodate complex-
valued data tensors [13]. In the PolSAR domain, these types
of complex-valued CNNs were applied to accurately classify
polarimetric SAR images [14], [15]. To the best of our knowl-
edge, the application of a complex-valued deep neural network
for despeckling PolSAR data is yet to be demonstrated. In this
letter, we propose for the first time a new architecture named
CV-deSpeckNet that is designed to estimate a dual polarimetric
covariance matrix in the complex domain.

II. METHOD

A. SAR Polarimetry

A data vector in fully polarimetric SAR sensors
assuming reciprocity is given as follows: k =
(1/(2)1/2)[ SY Y + SX X SY Y − SX X 2SXY ]T , where T

designates a vector transpose. In dual polarimetric data
as in Sentinel-1 configuration (VV VH), k reduces to
k = [ SX X 2SXY ]T, where the complex scattering coefficient
SXY indexed as X, Y = (V , H ) represents the vertical (V )
and horizontal (H ) polarization states [16]. In a distributed
medium, k follows a zero mean multivariate complex circular
Gaussian probability density function (pdf) given as:

p(k) = 1

π3|C|exp(−k†C−1k) (1)

which is insufficient to describe the scattering process of the
scene. Therefore, the second-order statistics represented by the
covariance matrix C that define the pdf of k is estimated to
describe the scattering process. Here, C is given as C =
E{kk†}, where E{} is the expectation operator, |C| is the
determinant of C , and † is the matrix conjugate transpose.
Here, C is an unknown deterministic quantity that has to
be estimated from the data and follows a complex Wishart
distribution [5]. In the PolSAR speckle filtering literature,
the expectation operator is replaced by spatially adaptive filters
assuming stationarity and ergodicity within the selected pixels.

The observed covariance matrix Ĉ follows a multiplicative
noise model, i.e., Ĉ = C1/2 NC1/2, where N is a random
speckle. The signal-dependent multiplicative noise can be
converted to a signal-independent additive noise by taking
the matrix logarithm of Ĉ . The signal-independent model
can be converted back to its original multiplicative form by
taking the matrix exponent. In this letter, we apply a complex-

Fig. 1. Architecture of CV-deSpeckNet. The polarimetric covariance matrix
in the log form follows an additive noise model. Therefore, the architecture
of CV-deSpeckNet follows this model using two separate FCNs to estimate:
1) the clean covariance matrix and 2) the noise, separately. These two
components are then summed up and converted to the multiplicative noise
model by taking a matrix exponent to reconstruct the original noisy covariance
matrix. At the test time, only the clean covariance matrix estimation part
(FCNcov) of the network is utilized.

valued deep fully convolutional network (FCN) to estimate the
covariance matrix C̃ .

B. Network Architecture

We propose a multistream complex-valued architecture named
CV-deSpeckNet to estimate the covariance matrix C̃ and the
noise Ñ , separately (see Fig. 1). A variant for single-channel
real-valued SAR intensity image despeckling was proposed
in [17]. We adopted this architecture to train a robust model
for learning feature representation and the underlying noise
distribution in a complex-valued data, i.e., two identical FCNs
estimate C̃ (FCNcov) and Ñ (FCNnoise), separately. With those
two components, we reconstruct the noisy covariance matrix
(Ĉ) using the assumed signal independent additive noise that
results from taking the matrix logarithm of Ĉ . CV-deSpeckNet
is designed to rectify the limitation of deSpeckNet [17] by
processing naturally complex-valued data in its native form
without splitting real and imaginary components as separate
channels.

Both (FCNcov) and (FCNnoise) consist of three main
building blocks: 1) complex-convolution (CV-Conv) [13];
2) complex-activation (CReLU) [15]; and 3) complex-batch
normalization (CV-BN) [13]. The architecture does not use
any pooling layers to avoid upsampling layers to reconstruct
the feature maps to their original sizes, as these lay additional
computational burden. Instead, we maintained the sizes of
feature maps in the intermediate layers and increased the
depth of the network.

The deep learning objective is, therefore, formulated as

arg min
θ

∑
L( fθ (Ĉ), C). (2)

Here, Ĉ is the observed rank 1 covariance matrix, C is the
reference covariance matrix used as a proxy for the noise-
free covariance matrix, and fθ is the deep neural network
parameterized by the complex-valued parameters θ learned
under the loss function L.
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To train the network, we employ two types of loss functions,
the sum squared error (SSE)-based Lcov and Lnoise, which are
combined as L = Lcov + Lnoise.

We apply the Lcov loss between the reconstructed clean
covariance matrix (C̃) and the reference temporally averaged
covariance matrix (C) in the log domain.

The SSE loss function in the complex domain is identical
to its real-valued counterpart given as

Lcov(C̃, C) = μ

H∑

i=1

W∑

j=1

D∑

d=1

1

2
(C̃i jd − Ci jd)

2 (3)

where H , W , and D are the height, width, and the number of
feature maps in the estimated covariance matrix, respectively,
and μ is the weight assigned to the loss. Once C̃ and Ñ
are reconstructed, an elementwise addition is applied, and
the reconstructed noisy covariance matrix is converted to the
original linear scale by taking the matrix exponent (see Fig. 1).
The reconstructed noisy covariance matrix is then compared to
the input covariance matrix by using another SSE-based loss
Lnoise

Lnoise(
ˆ̃C, Ĉ) = ξ

H∑

i=1

W∑

j=1

D∑

d=1

1

2
( ˆ̃Ci jd − Ĉi jd)

2. (4)

Here, ξ is the weight assigned to Lnoise.

III. DATA SETS

CV-deSpeckNet is tested using a rank 1 covariance matrix
synthesized by taking the outer product of k from a dual-
polarization Sentinel-1 single look complex (SLC) images
acquired near the city of Jambi and the village of Tempino-
ketjil, Sumatra, Indonesia. The images are acquired in
the C-band in the interferometric wide swath mode (IW) in
descending orbit. The images were acquired with an incidence
angle of 40.020 and have a resolution of 3.14 m × 11.05 m.
The image acquired around Jambi on May 13, 2019, and
June 30, 2019, hereafter referred to as training image, was
used as training data and each spanned 1000 × 1000 pixels.
The trained model was tested on the image acquired on
October 4, 2019, in the same geographical area as the training
image, hereafter referred to as test image 1. In addition,
an image acquired around Tempino-ketjil on May 13, 2019,
hereafter referred to as test image 2, was used as the second
test image. This image spanned 500 × 500 pixels. For
synthesizing the reference labels, we used 18 images acquired
from May 13, 2019, to November 21, 2019, over the same
area. We used test images 1 and 2 for testing and obtaining
the reported quality measurements. Test image 1 covers a
mixed urban and natural scene, whereas test image 2 covers
a natural environment (see Fig. 2).

IV. EXPERIMENTAL SETUP

A. Training

Since the complex arithmetic used in the building blocks of
the complex-valued neural network can be simulated with
real-valued arithmetic [13], the input data to the network
were prepared by vectorizing the Sentinel-1 2 × 2 covariance

Fig. 2. Input images used to test CV-deSpeckNet. The areas in the red and
green boxes were used for qualitative comparison of the methods. The areas
in the small white boxes in both images were used to estimate ENL (red: C11,
green: C22, and blue: C11/C22). (a) Test image 1. (b) Test image 2.

matrix into a six-channel image representing the real and
imaginary parts of the upper triangular elements of the Her-
mitian positive semidefinite covariance matrix. The diagonal
elements of the covariance matrix are real-valued intensity
images, so, for mathematical convenience, we added 0i to
represent the imaginary part for these images. We also used a
temporal average of 18 covariance matrices synthesized from
18 images of the same region to prepare C used as a proxy
for the reference covariance matrix. We assumed polarimetric
stationarity that the dominant scattering mechanism of the
scene is not changing within the considered time span. Since
18 images are too few to synthesize a relatively noise-free
covariance matrix, we perform additional spatial filtering using
the MuLoG framework proposed in [7].

The networks were trained using the Adam optimization
method. Both FCNcov and FCNnoise consist of 17 complex-
valued convolutions with 48 filters. Complex-valued Batch
normalization was used for every complex-valued convolution
layer except the first and prediction layers. The networks
were trained for 50 epochs with a learning rate of 10−3 for
30 epochs and an additional 20 epochs with a rate of 10−4.
We set the weight (μ) of the Lcov to 100, and the weight (ξ ) of
LNoise was given a value of 1. To apply this, we used a training
set of 58 368 randomly selected patches of size 40 × 40 × 6
representing the real and imaginary parts of the unique upper
triangular elements of the covariance matrix. A minibatches
of 64 samples and a weight decay factor of 5 × 10−4 were
used. We trained the network using the Keras complex library
[18] on the Google Colab platform using a Tesla T4 GPU.

To assess the performance of CV-deSpeckNet, we compared
it with extended Lee sigma filter [19], MuLoG [7], real-
valued FCN (RV-FCN) that used real-valued building blocks,
and deSpeckNet [17]. RV-FCN was trained using the same
architecture as FCNcov. CV-deSpeckNet and deSpeckNet were
trained using the same number of parameters. In both cases,
unsupervised fine-tuning [17] was not applied. Extended Lee
Sigma and MuLoG are both unsupervised methods that require
only 1 s and 2.36 min, respectively. The training of RV-
FCN required 1.3 h, whereas deSpeckNet and CV-deSpeckNet
required 2.6 and 7.01 h, respectively.

B. Quality Metrics

To evaluate the performance of CV-deSpeckNet and the
state-of-the-art PolSAR despeckling methods quantitatively,
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Fig. 3. Covariance matrix estimation result for a baseline method and CV-deSpeckNet for a 200 × 200 and 300 × 300 subset for test image 1 indicated on
(see Fig. 2). We show the color composite (red: C11, green: C22, and blue: C11/C22) for (a) Ĉ (input), (b) extended Lee sigma, (c) MuLoG, (d) RV-FCN, (e)
deSpeckNet, and (f) CV-deSpeckNet.

Fig. 4. Covariance matrix estimation result for baseline methods and CV-deSpeckNet for a 200 × 200 subset of test image 2. We show the color composite
(red: C11, green: C22, and blue: C11/C22) for (a) Ĉ (input), (b) extended Lee sigma, (c) MuLoG, (d) RV-FCN, (e) deSpeckNet, and (f) CV-deSpeckNet.

TABLE I

PSNR, SSIM, DG, ENL VALUES AVERAGED FOR THE TWO DIAG-
ONAL ELEMENTS OF THE COVARIANCE MATRIX, AND THE α̃ , H̃ ,

AND Ã VALUES DERIVED FROM THE FULL COVARIANCE MATRIX.
CV-DESPECKNET (TEST) REFERS TO CV-DESPECKNET FINE-

TUNED ON A TEMPORALLY AVERAGED IMAGE FOR THE

TEST SCENE USED AS AN UPPER BOUND

we used temporally averaged images obtained in the same
areas as the test images. The quality metrics used to evaluate
the performance of the compared methods in the presence
of full reference label image are the peak signal to noise
ratio (PSNR), structural similarity index (SSIM) [17], and
despeckling gain (DG) [20]. These metrics are averaged for
the diagonal elements of the covariance matrix, which are real-
valued intensity images. Furthermore, to evaluate the perfor-
mance of CV-deSpeckNet and compared methods, we use the
absolute error of the polarimetric scattering mechanism (α̃),
entropy (H̃ ), and anisotropy ( Ã) [16], [21] derived from the
full covariance matrix.
To evaluate the despeckling ability of CV-deSpeckNet and
the compared methods without reference data, we used visual

inspection as a qualitative measure and the equivalent num-
ber of looks (ENL) derived in a homogeneous region as a
quantitative measure for comparison.

V. RESULTS AND DISCUSSION

A. Qualitative Assessment

In test image 1, both extended Lee sigma and MuLog resulted
in a smooth output but, on close inspection, many artifacts
can be observed, whereas RV-FCN failed to remove most of
the speckle from homogenous regions and preserve the subtle
features in the image. The filtered output still maintained
the noisy appearance of the single-look covariance matrix.
This was due to the insufficient number of training samples,
as a progressive increase in the training set improved its
performance. CV-deSpeckNet and deSpeckNet performed
better than the other methods in removing speckle while
preserving subtle features, such as edges and point scatterers
(see Fig. 3). Since test image 1 is acquired over the training
area with a different realization of speckle, the results indicate
that the multistream architecture is more robust in learning
underlying speckle noise.

In test image 2, both the extended Lee sigma filter and
MuLog still maintained a smooth output, whereas RV-FCN
still failed to remove speckle and preserve subtle features.
This was expected as the image scene, and noise distribution
was expected to vary from the data that it was trained on.
However, CV-deSpeckNet resulted in the best output as less
noise was observed in the estimated image composite and most
subtle features were preserved (see Fig. 4). This clearly shows
the generalization capability of multistream complex-valued
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architectures. In the test regions, for all methods, supervised
tuning of the model was not performed. The reference tempo-
rally averaged covariance matrix was only used to derive the
quantitative quality metrics.

B. Quantitative Assessment

The potential of CV-deSpeckNet is further exemplified by
the improvement of the quantitative metrics defined in
Section IV-B. In test image 1, CV-deSpeckNet achieved the
highest PSNR, SSIM, and ENL values compared to extended
Lee sigma, MuLog, RV-FCN, and deSpeckNet (see Table I).
It also achieved the lowest absolute error for (α̃), entropy
(H̃ ), and anisotropy ( Ã) values. CV-deSpeckNet achieved the
highest result in all quality metrics compared with the quanti-
tative results in test image 2. This indicates the robust feature
representation learning ability within multistream complex-
valued FCNs. To establish the upper bound for test images
1 and 2, we applied supervised tuning of CV-deSpeckNet
in the test images using the temporally averaged reference
data. These results show that CV-deSpeckNet, ever without
using supervised tuning on the test image, is able to reach
comparable performance to a network tuned on a reference
test image (see Table I).

VI. CONCLUSION

We have presented CV-deSpeckNet, a multistream complex-
valued FCN architecture, which is able to learn a model
suitable for despeckling and effective estimation of the dual-
polarized covariance matrix. Our experiments on test images,
obtained over different regions, confirm the robustness of
CV-deSpeckNet. CV-deSpeckNet proved to be effective in
estimating the covariance matrix while preserving the image
quality with modest-sized training data. It was also able to
learn robust feature representation that was able to adapt to
a new test image. It provided better estimation results than
the state-of-the-art methods and its real-valued counterpart,
and a comparable performance with FCN models tuned with
temporally averaged images.
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