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PolSARNet: A Deep Fully Convolutional Network
for Polarimetric SAR Image Classification
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Abstract—Deep learning has successfully improved the classifi-
cation accuracy of optical remote sensing images. Recent works
attempted to transfer the success of these techniques to the mi-
crowave domain to classify Polarimetric SAR data. So far, most
deep learning networks separate amplitude and phase as separate
input images. In this article, we present a deep fully convolutional
network that uses real-valued weight kernels to perform pixel-wise
classification of complex-valued images. We evaluated the per-
formance of this network by comparing it with support vector
machine, Random Forest, complex-valued convolutional neural
network (CV-CNN), and a network that uses amplitude and phase
information separately as real channels. The evaluation was done
on a quad-polarized AIRSAR image and a dual-polarimetric multi-
temporal Sentinel-1 data acquired over Flevoland, the Netherlands.
The proposed method achieved higher accuracy compared to all
other networks with the same architecture.

Index Terms—Convolutional neural network (CNN), deep
learning, image classification, machine learning, polarimetric SAR
(PolSAR).

I. INTRODUCTION

D EEP learning for remote sensing images refers to a collec-
tion of techniques that are capable of learning a hierarchi-

cal representation of data for classification and object detection
[1]. The core characteristics of a deep learning technique, such
as a convolutional neural network (CNN), is the automatic
learning of hierarchical spatial features from remote sensing
images. Successful demonstration of CNN for the classification
of remote sensing data has been reported in [2]–[6].

Standard techniques for fully polarimetric synthetic aperture
radar (SAR) data classification are based on the polarimetric co-
herency or covariance matrices. These methods focus on first es-
timating the coherency or covariance matrix by reducing speckle
followed by feature extraction and classification. Lee et al. [7]
derived a complex Wishart distance measure to classify pixels,
whereas [8]–[11] used polarimetric decomposition to extract the
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different scattering mechanisms. A hierarchical classification
of the three canonical scattering mechanisms was used in [12]
to perform terrain classification. For SAR image classification
speckle reduction, feature extraction and classification steps are
performed separately to classify the polarimetric SAR (PolSAR)
images.

Several researchers transferred the success of CNN on op-
tical remote sensing images to the classification of SAR im-
ages. An SAR image, due to its coherent nature, is inherently
complex-valued. Initial attempts considered only the amplitude.
Chen et al. [13] used a deep CNN on the MSTAR-10 class
datasets, and Zhou et al. [14] applied CNN to a fully polarimetric
AIRSAR data. This has several drawbacks, as the information
in a SAR image, particularly the phase, is best represented as a
complex number [15], [16]. Complex-valued neural networks
were pioneered by [17], [18] and applied in relation to sig-
nal coherence and filtering. Although complex-valued neural
networks have been used in medical imaging and other signal
processing applications, they have so far attracted little atten-
tion in the remote sensing community. Danilla et al. [19] and
Mullissa et al. [20] used a multitemporal Sentinel-1 amplitude
images to classify crops. Recently, Zhang et al. [21] demon-
strated that a higher classification accuracy can be achieved
by jointly using amplitude and phase information by extending
the real-valued CNN to the complex domain for the applica-
tion of landcover classification from fully polarimetric airborne
sensors.

So far, CNNs have been trained from patches of SAR data
using a series of convolution, activation, and subsampling net-
works followed by one or several fully connected layers. Once
the network was trained, testing was done per patch in a sliding-
window manner to label the center pixel in the patch. Such testing
is inefficient and time-consuming [22], while fully convolutional
networks (FCN) label the image on a pixel-to-pixel basis without
the redundant processing of an entire patch to label one pixel,
thereby expediting the computational efficiency.

The complex-valued CNN (CV-CNN) proposed in [21] uses
complex-valued weight kernels, applied on the complex-valued
image data. This procedure scales and rotates the input data in
the complex domain extracting features from a spatial neigh-
borhood. The CV-CNN replaces each convolutional layer in the
network by four real-valued convolutions that correspond to the
individual real and imaginary parts of the complex tensor and
weight kernel. When applying a deep neural network consisting
of a large number of filter banks, the amount of real-valued
computations becomes large. Furthermore, as reported in [15],
the training of CV-CNN becomes increasingly unstable, as it
depends upon the complexity of the network. Hence, we suggest
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Fig. 1. PolSARNet architecture.

a computationally less expensive deep hybrid fully convolutional
network that uses real-valued weight kernels. Convolution of a
complex-valued data tensor with real-valued weights yields a
complex-valued output at each layer in the network. Hence, we
use a complex-valued activation, batch normalization, and back-
propagation to train this network. Such a method that is more
stable and computationally tenable than the CV-CNN concepts
is introduced in [21]. It uses real-valued weight kernels and takes
as input the complex data of the polarimetric coherency matrix.
It formulates the building blocks of a deep fully convolutional
network in the complex domain. The proposed method (Pol-
SARNet) is evaluated on a fully polarimetric AIRSAR dataset
acquired over Flevoland, the Netherlands and a Sentinel-1 dual
polarimetric multitemporal data acquired over the same area. It
is compared with real-valued FCN with the same architecture
and hyperparameters.

The novel contributions of this article are as follows.
1) Real-valued parameters network for complex-valued

data: A real-valued weight kernels network processes
complex-valued data tensors to extract spatial features
in a deep fully convolutional neural network. We apply
complex-valued activations, batch normalization layers,
and backpropagation for training.

2) Demonstrate a robust architecture for multitemporal Pol-
SAR data classification: The performance of the proposed
method is analysed in classifying a multitemporal dual
polarimetric Sentinel-1 dataset.

II. POLSARNET

PolSARNet uses real-valued weight kernels to extract spatial
features from complex-valued polarimetric data in the complex
domain. To this effect, the building blocks of the neural network
are redesigned. It contains a feature extraction block consisting
of convolutions that are interleaved with activation and batch
normalization layers (Fig. 1). After a series of feature extraction
steps, a loss function derives the prediction error from the
network. A backpropagation step updates the kernel weights
in the initial weight kernels. These steps are repeated iteratively
until a termination condition is met.

A. Building Blocks of PolSARNet

1) Complex-Valued Convolutions With Real-Valued Dilated
Kernels: The convolutional block proposed in this article
applies convolution to the input complex-valued image with a
bank of real-valued filter kernels and adds a real-valued bias
term. The learnable weights of the filter bank are represented by
a 4-D tensor w ∈ RH×W×D×K and a bias term b ∈ R. Here, H

Fig. 2. Kernel dilation for an arbitrary 3× 3 filter kernel. From left to right, a
dilation factor d = 1, d = 2, and d = 3.

andW are the height and width of the kernel,D is the number of
input feature channels, and K is the number of filters. For multi-
temporal polarimetric SAR images, each image in the coherency
matrix is concatenated with each other. Additional parameters
control the size of the output from the convolution operation. The
stride s is the number of pixels between convolution centers.
Padding consists of adding p zeros around the border of the
input image before applying the filter so that the input image
and the output feature map have the same dimension. Given an
input image x ∈ CM×N×D designated as x = r+ iz, the kth
channel of the complex-valued output feature map y equals [22]

yqrk = bk +

H∑

i=1

W∑

j=1

D∑

d=1

wijdk � xs(q−1)+i−p,s(r−1)+j−p,d

(1)
where � is the complex convolution operator. The size of the
output feature map equals M ′ ×N ′ ×K = �M−H+2p

s + 1� ×
�N−W+2p

s + 1� ×K. In the complex domain, convolution is
distributive so we can decompose the complex convolution
operator � as

x�w = (r ∗w) + i(z ∗w) (2)

where ∗ is a real-valued convolution.
To increase the spatial receptive field of each filter without

increasing the number of learnable parameters, we adopt a
kernel dilation. This is obtained by inserting d zeros between
kernel elements [23] and effectively achieves large spatial sup-
port without increasing the number of learnable parameters. A
dilation factor d = 2 causes a 1-D kernel [f1, f2] to be trans-
formed to [f1, 0, 0, f2]. Hence, a dilation factor of d alters a
filter of size (H,W ) to a filter size of H̃ = d(H − 1) + 1 and
W̃ = d(W − 1) + 1 (Fig. 2).

Real-valued convolutions represented by conventional CNNs
can be interpreted as a heat map of similarity in between the
data and kernel. The dot product representing the convolution
operation is maximized when the data and the kernel assume
similar values. Similarly, in complex-valued convolution, the
output of the complex-valued convolution is maximized when
the amplitude of the data and the filter kernel assume similar
values. Since the amplitude of a complex number is the square
root of the squares of the sum of the real and imaginary parts, it is
evident that different filter kernels yield the same amplitude with
different phase angles. This leads to inconsistencies in extracting
different features from images [15]. The convolution operation
used in [21] transforms both the amplitude and phase values in
the complex domain. Hence, the complex-valued network trains
the complex-valued weight kernel to align with the complex-
valued data in the complex domain to obtain higher amplitudes in
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Fig. 3. An illustration of a complex-valued input data convolution with a
real-valued weight kernels. In the figure, MR, MI , and KR represent real
feature maps, imaginary feature maps, and real kernel weights.

the output feature maps which can be extracted by the activation
layer. However, in some instances, a unique position is absent
for the filter kernels in the complex domain to achieve higher
amplitude in the output feature map, thus presenting an ambigu-
ity [15]. To avoid this ambiguity, we designed the convolution
operation of the complex-valued data with a real-valued kernel
to scale the amplitude while preserving the phase of the input
data tensor. This enhances the amplitude of the input data while
preserving the phase, thus avoiding the ambiguity described in
the previous sentence. Hence, the convolution with real-valued
kernels gives the opportunity to extract features by preserving the
representation of the complex tensor (Fig. 3). Since the phase
difference in a PolSAR data possess spatial structure, i.e. the
phase difference values for different ground features are unique,
it is desirable not to change the original phase difference values.
Hence, the real-valued filter kernels are trained without falling
into phase ambiguities.

2) Complex Batch Normalization: Batch normalization is
essential to accelerate learning of deep neural networks [24]. The
batch size defines the number of samples that will be used in the
training process. Batch normalization normalizes each feature
channels in a 4-D tensor. The convolution operators proposed in
this article use real-valued weights, and we normalize the real
and imaginary parts of a complex input data to zero mean. We
start by centering the real and imaginary components to zero
mean per input feature map as

x̃ =
x− E[x]√
σk + ε

(3)

where E[.] is the mean of each feature map

E[x] =
1

MNK

M∑

i=1

N∑

j=1

K∑

d=1

xijd (4)

σk is the standard deviation of each feature map in the input data
tensor x

σ =
1

MNK

M∑

i=1

N∑

j=1

K∑

d=1

(xijd − E[x])2 (5)

and ε is the scale factor added to prevent dividing by zero. The
complex batch normalization (as its real counterpart) is defined

as

BN(x̃) = γx̃+ β (6)

where γ is a complex scaling parameter andβ is a bias term in the
batch normalization process. Since both γ and β are learnable
parameters, we initialize γ by setting it to one and β to zero.
This results in a Gaussian distribution for every feature map in
the output tensor in both the real and imaginary components.

3) Complex Activation Function: A common nonlinear ac-
tivation function employed in a neural network is the rectified
linear unit (ReLU) [25]. For a real-valued neural networks, the
ReLU is defined as

∀(y) ∈ R ReLU(y) =

{
y if y ≥ 0

0 otherwise.
(7)

We expand the real-valued ReLU to the complex data by setting
the phase of the complex number strictly positive by keeping
θy ∈ [0, π

2 ] or strictly negative by keeping θy ∈ [π, 3π
2 ]. Hence,

the complex-valued ReLU, or ReLUc for short, on a complex
function y equals

ReLUc(y) = ReLU(
(y)) + iReLU(�(y)). (8)

Alternatively, using the same criteria described earlier, we can
derive the complex-valued sigmoid activation function. For a
real-valued network, the sigmoid activation function equals

Sigmoid(y) =
1

1 + exp(−y)
(9)

and the complex-valued sigmoid function is defined as

Sigmoidc = Sigmoid(
(y)) + iSigmoid(�(y)). (10)

4) Loss Function: In the training of a neural network, a loss
function derives the cost of classification errors. In training a
deep neural network, a softmax loss function is commonly used
to derive both the categorical loss and the differentials with
respect to the input data. For semantic segmentation involving
C classes, a softmax loss function equals [26]

En = −
N∑

n=1

tn · log(yn). (11)

Here,E is the loss function,N is the number of samples involved
in the estimation, tn is a binary vector containing the target label,
and yn is the class score map: binary target label vector contains
values equal to 0 or 1 only. For the class representing the actual
label, a value of 1 is assigned, whereas for all other classes, a
value of 0 is assigned. The class score maps are obtained using
a softmax function

ykij =
exp(xkij)∑C
c=1 exp(xcij)

(12)

where xcij are the unnormalized feature maps at location ij. We
take the maximum probability of the class scores to classify the
pixel

yij = argmax
c

{ycij}. (13)

For complex-valued feature maps xkij , the softmax loss cannot
be used directly, because it normalizes the feature channels
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to resemble class probabilities. Since the output of a sigmoid
function is bounded between 0 and 1, we apply a sigmoid
activation to the squared magnitude of the output feature map as
input in the softmax layer. In doing so, the real-valued softmax
operator (13) can be used directly to derive the loss.

B. Training the Network

1) Complex Backpropagation: In the training of a deep neu-
ral network, the weights and biases are iteratively optimized
until the loss function (13) is at a minimum for a predefined
number of epochs. We minimize the loss function by deriving
the gradient of the parameters and using the stochastic gradient
descent (SGD) algorithm to iteratively update their values [27].
The SGD algorithm randomly selects a mini-batch of training
samples from the available data stack. By estimating the error
gradient of the input filter bank and biases, we update the initial
filter parameters to best extract features and predict the target
output with a minimum error with respect to the ground truth.

Using the chain rule [21], the loss function is iteratively
updated to reach a minimum value by adjusting the parameters
as

w(l)[t+ 1] = w(l)[t]− η · ∂z
∂w

(l)[t]. (14)

Here, ∂z
∂w is the partial derivative of the output with respect to

the weight that is computed by the network, η is the learning
rate, l is the layer number in the feedforward architecture and
t is the iteration number. The error gradients are consequently
derived by following the chain rule. The partial derivative of the
output with respect to the weight equals

∂z

∂w
(l) = −

(


(
∂z

∂y
(l + 1)

)
· 
(x̃(l))

+ �
(
∂z

∂y
(l + 1)

)
· �(x̃(l))

)
(15)

where ∂z
∂y is the error term with respect to the previous feature

map in the backward pass, and x̃ is the feature map in the
forward pass. In this way, we obtain weights with the smallest
classification error.

Next we update the error term with respect to the output ( ∂z∂y ),

the error term with respect to the data tensor ( ∂z∂x ) and the partial
derivative of the output with respect to the weight for the weight
kernel of that layer ( ∂z

∂w ), These terms are completed for each
layer. To do so, we focus on the derivatives of the output layer,
batch normalization and convolution.

Derivative of the Output Layer: The error term with respect
to the data for the output feature map from the last layer in
the forward pass is derived by using the output of the softmax
function as

∂z

∂y
(l) =

∂z

∂y
(l + 1)(y − 1). (16)

Here, ∂z
∂y (l + 1) is the initial error term for the output initialized

as a unity tensor (i.e., the dimension of this tensor is the same
size as the softmax operator) and y is the output of the softmax
operator.

Derivative of the Batch Normalization Layer: For the batch
normalization, the derivatives of the output with respect to γk

and βk equal

∂z

∂γ
(l) =

M∑

i

N∑

j

T∑

t

∂z

∂y
(l + 1)x̃ (17)

∂z

∂β
(l) =

M∑

i

N∑

j

T∑

t

∂z

∂y
(l + 1) (18)

respectively. The derivative of the output with respect to the
feature map is influenced by ∂z

∂γ (l + 1) and ∂z
∂β (l + 1) as well as

the batch normalization step in the forward pass, given as

∂z

∂x
(l) =

γ√
σ2 + ε

·
[
∂z

∂y
(l + 1)− 1

MNK

(
∂z

∂β
(l + 1)

−
(
x− E[x]√
σ2 + ε

)(
∂z

∂γ
(l + 1)

))]
.

(19)

By iteratively learning γ andβ, the network adjusts the deviation
in the data distribution to fit the zero mean Gaussian probability
density function.

Derivative of the Convolution Layer: The derivative of the
output with respect to the weight for each convolution layer
( ∂z
∂w (l)) is obtained from the derivatives of the previous layers

with respect to the output ( ∂z∂y (l + 1)) and the current layers data
tensor x(l) using (15).

C. Weight Initialization

Weight initialization is critical for successfully training a neu-
ral network. In a real-valued network, the weights are automati-
cally initialized from a zero mean Gaussian distribution, which
usually suits most optical datasets. Since SAR data follow a zero
mean circular Gaussian probability density function, we initial-
ize the real-valued weight kernels from a zero-mean Gaussian
probability density functions with variance of (σ = 10−2 · 1√

D
).

III. DATASETS

To evaluate the performance of PolSARNet, we used a fully
polarized AIRSAR data acquired over Flevoland, the Nether-
lands and two sets of Sentinel-1 data consisting of eight and five
dual polarized multitemporal Sentinel-1 images acquired in a
different part of Flevoland, the Netherlands (Fig. 10).

A. AIRSAR Data

The AIRSAR sensor acquires data in C, P, and L bands for
the quad polarization images. L band was used to evaluate the
performance of PolSARNet (Table I). The fully polarimetric
AIRSAR data was obtained from a four-look multilooked co-
herency matrix from the European Space Agency (ESA). The
data were used in the network without further processing. The
test areas contain 1024 × 1020 pixels for the AIRSAR data in
range and azimuth directions, respectively, and cover completely
agricultural areas. The polarimetric scattering properties of the
scene can be observed from the false color composite of the
region (Fig. 4).

We used ground truth data for the AIRSAR data obtained
from the MAESTRO campaign [28]. Labels for the agricultural
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TABLE I
JPL/NASA AIRSAR AIRBORNE POLARIMETRIC SAR SENSOR

ACQUISITION PARAMETERS

Fig. 4. False color composite of AIRSAR data. The red, green, and blue colors
represent double bounce, volume, and single bounce scattering mechanisms,
respectively.

land in the AIRSAR data were divided into 14 classes (see
legend for Fig. 5). For testing the trained network, we prepared a
separate set of testing polygons that were spatially disjoint from
the polygons used in the training.

B. Sentinel-1 Data

The Sentinel-1 sensor acquires data in C band for both single
and dual polarization data (Table II). The test area contains
two separate areas designated as Sentinel-1 Area 1 acquired
around the village of Dronten from May to October 2017 and
Sentinel-1 Area 2 acquired around the village of Zeewolde
from June to September 2016. Sentinel-1 Area 1 consists of
eight images covering 3351× 3756 pixels in range and azimuth
directions, respectively. Sentinel-1 Area 2 consists of five images
covering 2992× 3260 pixels in range and azimuth directions,
respectively. Both datasets were acquired over a completely
agricultural area in the Flevoland region of the Netherlands.
Even though both datasets are from Sentinel-1 sensor, the two
regions have different number of images and agricultural parcel
size is also different. Hence, we applied two Sentinel-1 dual-
polarization multitemporal experiments (IV-B and IV-C) to show
the robustness of the proposed method. The scattering coefficient
change in time with respect to the VV channel for the scene can

Fig. 5. Classification maps of PolSARNet for the AIRSAR dataset.

TABLE II
ACQUISITION PARAMETERS FOR THE SENTINEL-1 IMAGES

be observed from the false color composite image of the scene
(Figs. 6 and 7).

We used ground truth data for the Sentinel-1 data obtained
from the Dutch Cadastre (PDOK). These were divided into
six classes and seven classes for Sentinel-1 Areas 1 and 2,
respectively, with class names shown in the legend of Figs. 8
and 9. To prepare the testing polygons, we also used a spatially
disjointed polygons from the training polygons. The Sentinel-1
data were obtained in a single-look complex (SLC) format.
Hence, the single-look multitemporal polarimetric coherency
matrix from dual polarized SAR data was obtained by following
the procedure detailed in [29] and [30], respectively.

Spatial multilooking was not necessary to the Sentinel-1 data
after obtaining the single-look coherency matrix. The single-
look upper triangular elements of the coherency matrix in each
individual dates (i.e., T11, T12, and T22) in the dual polarized
case are concatenated and fed into the network. Since PolSAR-
Net consists of convolution layers, speckle filtering and feature
extraction are done in a single run.
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Fig. 6. False color composite of Sentinel-1 data over Area 1. The red, green,
and blue colors represent the VV and VH channels on different dates. The red
color represents the intensity of the VV channel on August 10, 2016. The green
color represents the VH channel on July 17, 2016 and the red color represents
the intensity of the VV channel on July 5, 2016.

Fig. 7. False color composite of Sentinel-1 data over Area 2. The red, green,
and blue colors represent the VV and VH channels on different dates. The
red color represents the intensity of the VV channel on August 10, 2016. The
green color represents the VH channel on November 2, 2016 and the red color
represents the intensity of the VV channel on October 3, 2016.

IV. EXPERIMENTAL SETUP

A. AIRSAR Data

We prepared the training data as a 4-D tensor of dimension
13× 13× 6× 12 000 as input to the network. The 4-D tensor
represents 12 000 image patches randomly selected from the
original image with spatial dimension of 13× 13 pixels and
six channels corresponding to the upper triangular elements
of the coherency matrix. The architecture used to train the

Fig. 8. Classification maps of PolSARNet for the Sentinel-1 dataset over
Area 1.

Fig. 9. Classification results of PolSARNet for Area 2 of the Sentinel-1 dataset.

network consisted of six layers of convolutions using a dilation
factor up to d = 3. We also applied a stride of one and an
appropriate amount of padding to maintain the same feature
map size. The convolutional layers were interleaved by complex
activation functions and batch normalization layers. The last two
convolution layers used filter kernel dilation, whereas the initial
complex convolution layer was not dilated (Table IV). All layers
are initialized with random weights as described in Section II.
We also adopted a multistage training and validation step to train
the network.
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TABLE III
LIST OF SENTINEL-1 DATA USED IN THIS ARTICLE

TABLE IV
POLSARNET NETWORK ARCHITECTURE WITH DILATED KERNEL

CONVOLUTIONS APPLIED ON THE AIRSAR DATA

To evaluate the performance of PolSARNet, we compared it
against a real-valued fully convolutional network (FCNr3) that
used only intensity images without using phase information, i.e.,
T11, T22, and T33 with a dimension of 13× 13× 3× 12 000.
We also compared it with a real-valued FCNr9 which used all
nine real and imaginary components of the coherency matrix
as real channels in training the network. Hence, the real-valued
tensor used inFCNr9 has a dimension of 13× 13× 9× 12 000.
We further compared PolSARNet to CV-CNN, support vector
machine (SVM), and Random Forest. We trained the real-valued
fully convolutional method with a variable learning rate and
selected the learning rate that provided the best result within
100 epochs. CV-CNN was trained using the same architecture
and hyperparameters as described in [21]. We applied a Lee
sigma filter [31] of size 7× 7 to reduce speckle on the origi-
nal image before applying SVM and Random Forest. FCNr3

and FCNr9 were trained following the PolSARNet architecture
shown in Fig. 1. Both FCNr3 and FCNr9 resulted in higher
classification accuracy when using learning rate = ( 10−4),
whereas PolSARNet provided higher accuracy with a lower
learning rate = ( 10−7). We used early stopping for PolSARNet
to select the model that gives the best classification accuracy
on the validation set. For training, we randomly selected 12 000
labeled patches, a mini batch of 100 samples, and a weight decay
factor of 5× 10−4. Finally, the trained network was applied to
the test images. For a proper accuracy assessment, testing was
performed on a separate ground test set.

TABLE V
OVERALL ACCURACY (OA), MEAN USER ACCURACY (UA), AND MEAN

PRODUCERS ACCURACY (PA) FOR THE AIRSAR DATA

In Table V, we used four comparison metrics: 1) overall
accuracy (OA), 2) kappa coefficient (κ), 3) mean user accu-
racy (UA), and 4) mean producers accuracy (PA). The OA of
PolSARNet (87.58%) was higher than that of FCNr9 (81.17%)
and CV-CNN (82.29%). It achieved high classification accuracy
on all classes except on beets, maize, and lucerne. Both the real
and complex-valued networks achieved a similar classification
accuracies with the worst classification accuracy on lucerne.
Although the real and imaginary parts of the complex channels
were inserted into the real network, the mentioned landcover
classes were better identified and classified when using the
complex-valued input channels.

PolSARNet achieved higher classification accuracy as com-
pared toFCNr9 (Fig. 5). This indicates that the data are degraded
by separating the real and imaginary parts for the complex
elements of the coherency matrix. The OA of PolSARNet was
higher than that of all compared methods. To investigate the ef-
fect of using the same label data set used in training for accuracy
assessment, we took the same set of labels for testing. In this re-
gard, PolSARNet obtained an OA of 99.27%, CV-CNN obtained
99.9%, andFCNr9 99.62%, clearly showing an inflated accuracy
corresponding with what has been reported previously [21].

B. Sentinel-1 Area 1

To evaluate the performance of PolSARNet on Sentinel-1
Area 1 data, we prepared the input data as a 4-D tensor of
dimension 25× 25× 24× 12 000. The input tensor contains 24
channels, since the Coherency matrix from a single Sentinel-1
image contains three upper triangular elements corresponding to
three images. The purpose of using all upper triangular elements
of the coherency matrix in all eight sets of multitemporal images
was to use the change in backscatter property as a discriminative
feature. We used six convolutional layers with a maximum
dilation factor of six (DK-6) (Table VI). The data processed
using the architecture in Table IV is the four-look AIRSAR data.
We used a shallower network that uses less kernel dilation to
extract features. We used a shallower network because the data is
a fully polarimetric data with six unique channels corresponding
to the unique upper triangular elements of the coherency matrix.
Since there are more channels, it is not necessary to train a
deep network. Furthermore, since the data are multilooked, the
speckle level is lower than a single-look data so a kernel dilation
factor of three is used. On the contrary, the architecture used to
process the Sentinel-1 data, as shown in Table VI, is deeper and
uses a higher kernel dilation factor than that in Table IV. This
is because the data have three unique channels corresponding
to the coherency matrix of a dual polarized data resulting in a
lower information representation. Hence, a deep network is used
to extract features. Furthermore, the Sentinel-1 data used in the
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TABLE VI
ARCHITECTURE OF POLSARNET WITH DILATED KERNEL CONVOLUTIONS BY

A FACTOR OF SIX (DK-6) APPLIED ON THE SENTINEL-1 MULTITEMPORAL

AREA 2 DATA

manuscript are single-look data with a fully developed speckle.
To suppress the noise and extract features, a kernel dilation factor
of six is used.

The first layer is initialized with random weights as described
in Section II without any dilation. We first trained the dilated
kernel factor three (DK-3) by initializing the weights randomly.
Second, we used the weights trained in the kernels with dilation
factor of three as input to the kernel with dilation factor of four.
In this way, we progressed to the dilation factor of six.

To evaluate the performance of PolSARNet on the Sentinel-1
data, we compared it with a real-valued FCN with the same
architecture. For comparison, we created FCNr16 containing 16
images from the multitemporal sequence corresponding with the
diagonal element of the coherency matrix. We also compared it
with FCNr32 created by taking all the real and imaginary com-
ponents from all the unique members of the coherency matrix as
a separate real-valued channel. The real-valued FCN resulted in
higher classification accuracy when using larger learning rates
(10−3), whereas PolSARNet provided higher accuracy with a
lower learning rate (10−7). We used early stopping in the case of
PolSARNet to select the model that gives the best classification
accuracy on the validation model. To apply the training, we
randomly selected 12 000 labeled patches with a batch of 100
samples and a weight decay factor of 5× 10−4. Finally, the
trained network was applied to the test images.

The complex-valued convolutions with real-valued weights
improved the computational efficiency of training when com-
pared with complex-valued convolutions with complex-valued
weights of the same size by reducing the effective number
of convolutions from four to two, as done in CV-CNN. This
improved the computational time from 17.2 s per epoch to
14.04 s per epoch when training on input data tensor size of
13× 13× 15× 12 000 run on a Linux environment with a Xeon
E5-2660 2.6 GHZ CPU processor with ten cores. This can
translate to a significant improvement if hundreds of epochs
are used to train the network.

The OA of PolSARNet (82.58%) was higher as compared to
FCNr32 (80.95%) (Table VII). It achieved high classification ac-
curacy on all classes except maize. PolSARNet achieved higher
classification accuracy expressed as OA and κ (Table VII). This
shows the advantage of using phase information in training deep

TABLE VII
OVERALL ACCURACY (OA), MEAN USER ACCURACY (UA), AND MEAN

PRODUCERS ACCURACY (PA) FOR THE SENTINEL-1 DATA AREA 1

TABLE VIII
OVERALL ACCURACY (OA), MEAN USER ACCURACY (UA), AND MEAN

PRODUCERS ACCURACY (PA) FOR THE SENTINEL-1 DATA AREA 2

neural networks. Although the real and imaginary parts of the
complex channels were inserted into the real network inFCNr32,
the landcover classes were better identified and classified when
using the complex-valued input channels (Fig. 8). When apply-
ing CV-CNN on a single-look multitemporal Sentinel-1 data,
however, a problem of convergence was observed. Changing
the hyperparameters and network depth did not improve the
accuracy. The best overall accuracy of 21.9% is observed when
using a learning rate of 0.7.

The use of PolSARNet in the classification of Sentinel-1 data
proved effective to extract features and classify the images. Both
PolSARNet andFCNr were generally less sensitive to patch size
and filter size. However, PolSARNet was more sensitive to the
learning rate than the real-valued counterparts. The patch size
was also important in managing the computational efficiency.
Since we did not use GPU to process PolSARNet, selecting the
optimal patch size by considering tradeoff between accuracy and
computational efficiency was important. In this regard, a patch
size of 25× 25 was optimal.

C. Sentinel-1 Area 2

To further evaluate the performance of PolSARNet on
Sentinel-1 Area 2, we prepared the input data as a 4-D tensor
of dimension 25× 25× 15× 12 000. The training procedure
followed the same step as the one applied for Sentinel-1 Area 1.

We found that the OA of PolSARNet (87.39%) was higher as
compared toFCNr20 (84.23%) (Table VIII). Similar to Sentinel-
1 Area 1, it achieved high classification accuracy on all classes
except in maize (Fig. 9). Similarly, when applying CV-CNN
on single-look multitemporal Sentinel-1 data, a problem of
convergence was observed. A maximum overall accuracy of
25.42% was obtained when using a learning rate of 0.5. Overall,
PolSARNet achieved high classification accuracy as compared
to its real-valued counterparts.

V. DISCUSSION

PolSARNet proved to be effective in achieving higher classi-
fication accuracy both for the quad-polarized AIRSAR data and
the dual polarization multitemporal Sentinel-1 data. The appli-
cation of real-valued filter kernels on complex data reduced the
effective number of convolutions from a fully complex-valued
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Fig. 10. Location map of the two study areas. The AIRSAR data and Sentinel-1
Area 2 are acquired over the same area.

convolutions by half; therefore, it was beneficial in reducing
the computational time. The complex-valued off-diagonal el-
ements of the coherency matrix represent the complex corre-
lation between different Pauli channels [11]. Hence, the phase
difference in the image is due to the target physical properties.
This induces a spatial structure that can be clearly seen in the
phase images. The application of real-valued kernel helped to
scale the complex-valued data, thereby enhancing the magnitude
of different features. This increased the feature identification
capability and helped exploit the spatial structure that exists
within the complex-valued dataset.

Extra care should be taken to select uncorrelated training
and testing samples in a neural network. In [19], even though
the training and testing samples are split in the experiments,
the samples are not selected from a spatially disjointed region.
Hence, even though the samples are different, they are selected
from the same spatial region that is correlated, leading to the
inflated accuracies reported in the manuscript.

The application of real-valued weight kernels on complex-
valued data tensor contributed to the stability of the network
since the real-valued weight kernels enhanced the amplitude of
the feature maps by preserving the phase. Since the complex-
valued feature maps possessed a spatial structure related to
ground features, it reliably extracted features compared to CV-
CNN which transformed the phases. This was readily apparent
in processing the two Sentinel-1 data areas.

For the AIRSAR dataset, the data have already been mul-
tilooked four times, and hence the level of speckle found in
the image was lower. This helped the network to extract the
required features with high accuracy with a few convolution
layers. Furthermore, one can clearly differentiate crop classes
from the false color composite image, and hence both the com-
plex and real-valued networks achieved relatively similar overall
accuracies. This indicates that the phase information improved
the identification capability of some classes.

In contrast, the single-look Sentinel-1 data were affected by
fully developed speckle, and the respective crop types were not
readily discernible from only the intensity images represented
by the diagonal elements of the coherency matrix. Hence, us-
ing the phase information contained in the coherency matrix

was important. This was exemplified by the difference in the
overall accuracy obtained between FCNr and PolSARNet. Fur-
thermore, phase information was better represented when the
input channels are complex-valued as opposed to separating
the real and imaginary parts of the off-diagonal elements of
the coherency matrix and processing them as real channels as in
FCNr.

The selection of the filter size was done to preserve small
agricultural plots and subtle features within the image scene.
The 5× 5 filter kernel resulted in a smooth classified map
and with slightly higher classification accuracy as compared to
the 3× 3 filter kernel for the AIRSAR dataset. This is due to
the application of filter kernel dilation. With a dilation factor
equal to three, the 5× 5 filter is equivalent to 11× 11, which
provides long-distance spatial support to the network. However,
the improved accuracy came at the cost of distortion of plot
boundaries and smoothening of small agricultural plots. These
effects occurred in both the real and complex-valued networks.
Hence, the selection of filter sizes should be adjusted to the
application at hand. With respect to the data patch size, the
network did not show much sensitivity. Hence, patch sizes were
selected based on computational efficiency. The most sensitive
hyperparameter in training PolSARNet is the learning rate. It
achieved the best results in between 10−8 and 10−7. In contrast,
the real-valued networks gave the best results in between 10−4

and 10−3. Both FCNr networks resulted in low classification
accuracy when the learning rate was lower than 10−6.

VI. CONCLUSION

We conclude that PolSARNet achieved higher classification
accuracy as compared to its real-valued counterpart using the
same architecture. It was able to better exploit the information
contained in complex-valued images than the real-valued net-
works, taking the amplitude and phase separately. The potential
of the PolSARNet was also revealed when processing images
whose amplitude variation was less visible as opposed to the
phase variation. For future work, to exploit the temporal depen-
dencies of a multi-temporal sequence of images, we plan to use
a complex -valued recurrent neural network.
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