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ABSTRACT
Classification of crop types from multi-temporal SAR data
is a complex task because of the need to extract spatial and
temporal features from images affected by speckle. Previous
methods applied speckle filtering and then classification in
two separate processing steps. This paper introduces fully
convolutional networks (FCN) for pixel-wise classification of
crops from multi-temporal SAR data. It applies speckle fil-
tering and classification in a single framework. Furthermore,
it also uses dilated kernels to increase the capability to learn
long distance spatial dependencies. The proposed FCN was
compared with patch-based convolutional neural network
(CNN) and support vector machine (SVM) classifiers. The
proposed method performed better when compared with the
patch-based CNN and SVM.

Index Terms— Fully convolutional networks, deep learn-
ing, SAR, Sentinel-1, Remote Sensing

1. INTRODUCTION

Agricultural crop mapping is an essential component to crop
yield estimation. This has serious implications in economic
policy making. In this regard, remote sensing image classi-
fication has been the technique of choice because it is cost
effective and Sentinel data are freely accessible [1]. SAR
data are particularly relevant for multi-temporal analysis of
agricultural fields because of their all-weather imaging capa-
bility. Crop types can be distinguished from each other based
on their backscattering characteristics, spatial features (tex-
ture) and temporal evolution of the radar reflectivity. Recently
introduced deep learning methods such as convolutional neu-
ral networks (CNN) have been advantageous in these tasks
because they can learn spatial features directly from the input
image more effectively than standard techniques [2]. CNN
have been effective in pixel-wise classification of remote
sensing images.

In the literature, several studies have successfully applied
standard CNN’s [3] to SAR data in the context of semantic

segmentation [4] [5]. The processes consisted of applying
standard CNN to the data without speckle filtering [6]. Stan-
dard CNNs are patch based i.e. only the central pixels in the
patch is labeled. This, however, results in redundant process-
ing at inference time which leads to high computational time.
To improve this, a fully convolutional networks (FCN) [7]
is used. FCN’s can be adapted to pixel-wise labelling of an
input remote sensing image. Furthermore, both despeckling
and semantic labeling of the data can be performed in one
single processing framework.

In this paper, we design and apply FCN using dilated convolu-
tions for the application of crop mapping from multi-temporal
Sentinel-1 SAR images. We used an FCN with three convo-
lutional layers using dilated kernels interleaved by non-linear
activation functions. The dilated convolution was designed
to improve the spatial contextual feature learning. In the de-
signed network, SAR speckle filtering, spatial feature learn-
ing and semantic segmentation are performed within a single
framework. The objective of the paper is as follows: 1) to
evaluate the performance of FCN to classify a multi-temporal
SAR series, 2) to evaluate the spatial contextual feature learn-
ing capability and 3) to investigate the suitability of the de-
signed network for the application to crop type mapping.

2. METHODOLOGY

In this paper, we use a FCN that consists of filter banks
interleaved by non-linear activations whose parameters are
learned by minimizing a loss function. The main elements
of the network are convolutional layers with dilated kernels.
The weights of the layers are represented by a four dimen-
sional arrays which dimensions are given by the kernel size,
the number of channels being processed from the input image
and the number of convolutional filters. For this purpose, we
use a dilated filter bank to capture large range pixel depen-
dency in the image. To minimize the number of parameters
while keeping a large receptive field, instead of using con-
volutions with downsampling, we adopt dilated kernels as
suggested by [7]. The dilated kernels capture large spatial
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Layer module type dim dilation stride pad

DK1
conv

5 × 5
× 10 ×

16
1 1 2

lReLU

DK2
conv

5 × 5
× 16 ×

32
2 1 4

lReLU

DK3
conv

5 × 5
× 32 ×

32
3 1 6

lReLU

class. conv
1 × 1
× 32 ×

2
1 1 0

softmax

Table 1. Proposed FCN with three dilated convolutions
(FCN-DK3).

texture patterns in the image by inserting zeros between filter
cells.

The proposed network consists of three convolutional layers
that use dilation, one classification layer and a softmax loss
function. The convolutional layers use a 5 × 5 kernel with
increasing dilation factor of one, two and three (Table 1).
The convolutions are separated from each other by non-linear
activations. We used a Leaky Rectified Linear Units (lReLU)
with a leak factor of 0.1 [7]. The stride of the filter is set at 1
to avoid downsampling and a zero padding is applied to main-
tain the same dimension in the feature maps created from the
input image. The parameters of the designed FCN are shown
in Table 1. The networks used in this paper are implemented
using the MatConvNet library version 1.0-beta-23 compiled
with CUDA toolkit.

3. EXPERIMENTAL SETUP

3.1. Dataset

The proposed FCN is tested using 10 Sentinel-1 dual polar-
ized ground range detected (GRD) products acquired over
Flevoland, the Netherlands. The images have a nominal
ground resolution of 10 meters. The Sentinel-1 sensor ac-
quires data in C band for the dual polarimetric images (Table
I). The test areas contain 1243 × 1393 pixels and cover
12.4 km × 13.9 km in range and azimuth directions, re-
spectively. The Sentnel-1 image scene covers an entirely
agricultural area (Figure 1). The acquisition dates and acqui-
sition parameters are shown in Table 2. The ground reference

Fig. 1. False color composite image obtained by taking the
images at different dates.

data used in this paper was supplied in the form of ESRI
shapefile by NEO B.V.

Parameter Description
Polarization HH, HV

Sensor Sentinel-1A
Resolution 10m× 10m

Incidence angle 39.350

Orbit Ascending
Temporal baseline 12 days

Dates May 30, 2016 - August 10, 2017
Number of images 10

Table 2. Acquisition parameters for the Sentinel-1 images.

3.2. Network training

The networks were trained using stochastic gradient descent
(SGD) method. Batch normalization was used for every con-
volution layer. We finally trained DK3 by initializing the
weights of the first two layers randomly. A multi-stage train-
ing was applied to minimize the training and validation errors.
The networks were trained for 150 epochs with a learning rate
of 10−4 and an additional 20 epochs with a rate of 10−5. To
apply this we used a training set of 1000 randomly selected
labeled patches. A mini-batches of 32 samples and a weight
decay factor of 5× 10−4 was used. The trained network was
finally applied to the test tile.

The training of the network in this paper was conducted by
taking only the intensity image of the individual SAR im-
age. The classification result from FCN-DK3 was compared
with the state of the art classifiers: Support vector machines
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Fig. 2. (a) Ground truth polygons used in training. (b) Ground truth polygons used in validation. Classification results for (c)
SVM (d) CNN (e) The proposed FCN-DK3.
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(SVM) and patch based CNN. For the application of SVM,
we applied a refined Lee filter before classification, and Grey
level co-occurence matrix (GLCM) to extract features. The
filtered images and GLCM features were used for classifica-
tion. The patch based CNN is applied without applying any
speckle filtering.

Parameter Value

Kernel size 5
Patch size 15
Number of filters 32
Epoch 1000

Table 3. CNN network training parameters.

3.3. Classification results

To evaluate the results from the proposed FCN we split the
reference data into a training set and a validation set. The
three layer FCN is trained using the the polygons selected
from the ground truth data and the accuracy of the classifi-
cation scheme is evaluated from a separated set of polygons
that were not used in the training procedure. To evaluate
the performance of the proposed FCN we qualitatively and
quantitaively compared the results from a 5 layer patch based
CNN [3] (Table 3) and support vector machine (SVM) ap-
plied on a the same set of SAR images. The proposed FCN
provided a less noisy classification result when compared
with the CNN and SVM classification so we applied majority
voting based on polygons obtained from the dutch spatial
data infrastructure (SDI). It can be observed from Figure 2
that the different crop classes are better represented in the
proposed FCN than the patch-based CNN or SVM. As shown
in Table 4. the proposed FCN-DK3 achieves superior classi-
fication accuracy when compared with the patch based CNN
and SVM classifiers.

Classifier Overall accuracy Mean producers accuracy
SVM 49.03% 25.6%
CNN 51.37% 30.77%
FCN-DK3 54.16% 54.37%

Table 4. Classification accuracies.

4. CONCLUSIONS

We introduced a FCN for crop classification of SAR images.
The proposed method improves the classification accuracy
when compared to patch based CNN. The application of di-

lated kernels improved the learning capability of the network
by improving the spatial support of the network.
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