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Summary

Ground deformation measurements deliver valuable information for the under-
standing of natural hazards such as landslides, ground subsidence, earthquakes
and volcanism. Satellite based SAR interferometry provides detailed, cost
effective measurements for this purpose. The quality of these measurements,
however, is often degraded by decorrelation. Here quality is defined as the
number of measurement points and accuracy of deformation measurements
from these points. The degree of decorrelation is in particular severe in
natural environments where the number of coherent targets is limited. Hence,
improving the quality of deformation measurements in natural environments
is important to improve their usability.

This research exploits the polarimetric diversity provided by fully and par-
tially polarized SAR images to increase the number of measurement points
and deformation measurement accuracy. It is composed of three major topics.
First, the performance of three polarimetric optimization methods has been
analyzed and evaluated to select the polarization state that is least affected
by decorrelation. This was done in a single and double phase center scen-
ario. These scenarios are applied on dual and quad polarized SAR images
acquired from a completely natural environment in Ethiopia. The purpose
was to quantify the coherence improvement in different types of distributed
scatterers. Bias in the coherence estimation of the different optimizers was
investigated from simulated PolInSAR image. Deformations observed from
three different polarimetric optimization methods were compared with the
deformation values obtained from an in-situ GPS. The applied polarimetric
optimization routines substantially improved coherence estimation. These
routines have a lower estimation bias as compared to the traditionally used
single polarization channel.

Second, we developed a spatial filter using statistical homogeneous pixels
(SHP) based upon the scattering mechanism to improve the signal to noise
ratio of interferometric phase over distributed scatterers. This method was
first developed to estimate polarimetric coherency matrix for a single image.
It improved the estimation of coherency matrix by avoiding the indiscriminate
use of moving averages. Improvement was achieved by iteratively classifying
and refining the estimate of the coherency matrix. It derived the scattering
mechanism by applying the Cloude-Pottier eigenvalue-eigenvector decomposi-
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Summary

tion technique whereas the Wishart distance measure was used to classify the
scattering mechanism. Classification of scattering mechanisms was used as a
basis to group similar pixels for the spatial filter. To reduce bias caused by
pixel selection and that is generated by an incorrect decomposition and clas-
sification of scattering mechanisms, an iterative refinement of decomposition
and classification was used. The method was implemented on both simulated
and real PolSAR images acquired from the San-Francisco area, USA and
Flevoland, The Netherlands. The results were compared with other state of
the art spatial filters. Results indicated that the proposed method compares
favorably with other state of the art spatial filters in preserving polarimetric
information, spatial details and point scatterers.

Third, we adapted the scattering mechanism based spatial filter to improve
the signal to noise ratio of interferometric phase over distributed scatterers
and estimate interferometric coherence matrix. Selection of the most coherent
scattering mechanisms within a distributed scatterer candidate is done by
applying an eigenvalue decomposition of the interferometric coherence matrix.
To identify the distributed scatterer candidate for optimization we derived
a phase entropy measure to be applied as a threshold. Coherent scatterers
were selected by identifying scattering mechanisms in the resolution cell
that interfere with the dominant scattering mechanism. Performance was
evaluated on full and dual polarized SAR images acquired over Los Angeles
area, USA and Groningen, The Netherlands. Number of measurement points
and deformation estimates were compared with those of traditional PSI
methods. Results indicate that the proposed method substantially improved
the number of measurement points and the deformation estimate.

To summarize, this dissertation contributes to improving the quality of
deformation measurement in natural environments from both fully polarized
and partially polarized SAR images.
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Samenvatting

Metingen aan bodem-vervorming leveren waardevolle informatie op voor het
begrijpen van natuurlijke gevaren zoals aard-verschuivingen, bodemdaling,
aardbevingen en vulkanisme. SAR interfero-metrie vanuit satellieten biedt
gedetailleerde en kost-effectieve metingen voor dit doel. De kwaliteit van
deze metingen wordt echter vaak minder door decorrelatie. Hier is kwal-
iteit gedefinieerd als het aantal meetpunten en de nauwkeurigheid van de
vervormings-metingen op basis van deze punten. De mate van decorrelatie
is met name sterk in natuurlijke omgevingen waar het aantal coherente
tref-elementen beperkt is. Vandaar dat het verbeteren van de kwaliteit van
dergelijke metingen in natuurlijke omgevingen belangrijk is om hun bruikbaar-
heid te verbeteren.

Dit onderzoek richt zich op de polarimetrische diversiteit die wordt geboden
door volledig en gedeeltelijk gepolariseerde SAR-beelden met als doel om
het aantal meetpunten toe te laten nemen evenals de nauwkeurigheid van de
schatting van de vervorming. Het is samengesteld uit drie belangrijke onder-
delen. In het eerste hoofdstuk zijn de prestaties van drie polari-metrische
optimalisatie methoden geanalyseerd en gevalueerd om de polarisatie fase
te selecteren die het minst is benvloed door de correlatie. Dit is gedaan
met behulp van enkele en dubbele fase scenarios. Deze scenarios worden
toegepast op dubbele en viervoudig gepolariseerde SAR beelden verkregen
uit een volledig natuurlijke omgeving in Ethiopië. Het doel is hierbij om
de verbetering in de schatting van de coherentie van verschillende soorten
verspreide verstrooiers te kwantificeren. On-zuiver-heid in de schattingen
van de coherentie voor de verschillende optimalisatie methoden is onderzocht
voor een gesimuleerd PolInSAR beeld. Vervormingen die zijn waargenomen
via drie verschillende polari-metrische optimalisatie methoden zijn vergeleken
met de vervormingswaarden die zijn verkregen met een in-situ GPS. De
toegepaste polari-metrische optimalisatie routines zijn aanzienlijk verbeterd
via deze coherentie schatting. Deze routines hebben een lagere on-zuiver-heid
in vergelijking met het traditioneel gebruikte enkelvoudige polarisatie kanaal.

In het tweede hoofdstuk is een ruimtelijk filter ontwikkeld op basis van het
verstrooiings-mechanisme, waarbij we gebruik hebben gemaakt van statistisch
homogene pixels (SHPs). Het doel was om de signaal/ruis verhouding van de
interferometrische fase te verbeteren over verdeelde verstooiers. Deze methode
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Samenvatting

is eerst ontwikkeld om de polari-metrische consistentie matrix voor een enkel
beeld te schatten. Het verbeterde de schatting van de coherentie matrix door
het vermijden van het lukraak gebruik van voort-schrijdende gemiddeldes.
Verbeteringen werden bereikt door het iteratief classificeren en verfijnen
van de schatting van de coherentie matrix. Het verstrooiings-mechanisme is
afgeleid via de Cloude-Pottier eigenwaarde-eigendecompositie techniek, waar-
bij de Wishart afstandsmaat werd gebruikt om het verstrooiings-mechanisme
te classificeren. Classificatie van verstrooiings-mechanismen is gebruikt als
basis voor het groeperen van vergelijkbare pixels voor het ruimtelijk filter.
Een iteratieve verfijning van decompositie en classificatie is gebruikt om de
on-zuiver-heid te verminderen die voortkomt uit pixel selectie en die door
een onjuiste decompositie en classificatie van verstrooiings-mechanismen
wordt veroorzaakt. De methode is toegepast op zowel gesimuleerde als echte
PolSAR beelden van het gebied rond San-Francisco en beelden van Flevo-
land. De resultaten zijn vergeleken met andere gangbare schattingen van
het ruimtelijk filter. De resultaten gaven aan dat de voorgestelde methode
gunstig uitpakt in vergelijking met andere gangbare ruimtelijke filters met
betrekking tot het behoud van polari-metrische informatie, ruimtelijke details
en punt-verstrooiers.

In het derde hoofdstuk hebben we het ruimtelijk filter dat gebaseerd is op
het verstrooings-mechanisme aangepast om de signaal/ruis verhouding van
de inter-ferometrische fase te verbeteren en de interfero-metrische coheren-
tie matrix te schatten. Een selectie is uitgevoerd van de meest coherente
verstrooiings-mechanismen binnen een verdeelde verstrooiings-pixel door
het toepassen van een eigenwaarde decompositie van de interfero-metrische
coherentie matrix. De schatter van het ruimtelijke filter voor het verstrooiings-
mechanisme is aangepast om de interfero-metrische coherentie matrix af te
leiden. Om de kandidaat voor optimalisatie van verstrooiing te identificeren
hebben we een maat voor de fase entropie afgeleid die als drempel moet
worden toegepast. Coherente verstrooiers zijn geselecteerd door verstrooiings-
mechanismen te identificeren in de resolutie cel die interfereren met het
dominante verstrooiings-mechanisme. Het succes is gevalueerd op volledige
en dubbele gepolariseerde SAR beelden rond Los Angeles en rond Groningen.
Het aantal meetpunten en de vervormings-schattingen zijn vergeleken met
die van de traditionele PSI methoden. De resultaten laten zien aan dat de
voorgestelde methode het aantal meetpunten en de vervormins-schattingen
aanzienlijk verbetert.

Samengevat draagt dit proefschrift bij aan de verbetering van de kwaliteit
van vervormings-metingingen in natuurlijke omgevingen van zowel volledig
als gedeeltelijk gepolariseerde SAR-beelden.
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1. Introduction

1.1 Background

Remote sensing can be defined as the acquisition of information without
making physical contact with the target that is under observation. Depend-
ing upon the source of the measured energy, remote sensing sensors can be
divided into passive and active sensors. Passive sensors use the solar energy
to illuminate the target, whereas active sensors emit their own energy and
capture the reflected signal. This is the case for RADAR (Radio detection
and ranging) sensors. Radar sensors emit microwave pulses aimed at the
earth surface in the slant direction and process the reflected signal to derive
information about the distance, altitude and velocities of ground targets.
These systems scan the ground scene in a slant direction which provides
sensitivity in the range direction (direction of the radar path) and the azimuth
direction (sensor flight direction). The azimuth resolution is determined by
the transmitting antenna beam width, which is dependent on the physical
antenna length. There is a limit to the applicability of these systems be-
cause of restrictions in e.g. the weight and deployment of the physical antenna.

This limitation is solved by the introduction of SAR (Synthetic aperture
radar) systems. These systems illuminate the ground at regular intervals.
By coherently combining the echo acquired from different positions along
the trajectory of the sensors, a larger antenna size is able to be synthesized
(Figure 1-1). This allows for imaging of the ground surface at a higher resol-
ution. Radar images acquired by using this system are called SAR images.
SAR systems are coherent systems that capture both the back scattered
signal power (amplitude) and the number of cycles of the signal from sensor
to target (phase). In SAR systems, the raw signal echo is processed into a
2-D image. This is called a single look complex (SLC) image and contains
both the amplitude and the phase of the ground surface organized as pixels.
Detailed information on SAR systems and SAR image formation can be
found in (Elachi and Van Zyl, 2006) (Woodhouse, 2005) and (Cumming and
Wong, 2005).

Traditional SAR systems operate in a single linear vertical or horizontal
polarization state to transmit and receive electromagnetic waves to and from
a ground target. The polarization state of an electromagnetic wave is the
geometric orientation of the electric field vector. Depending upon target
shape, orientation and conductivity, the backscattered wave polarization
state may change (Boerner, 2006); (Krieger et al., 2005). Physical properties
of a target may therefore be retrieved by utilizing multiple combinations
of polarization. Polarimetric SAR (PolSAR) systems transmit and receive
different combinations of polarization states. The most common types of
polarization combinations are HH (horizontal transmit and horizontal re-
ceive), HV (horizontal transmit and vertical receive), VH (vertical transmit
and horizontal receive) and VV (vertical transmit and vertical receive). In
contrast with the single polarization SAR, a PolSAR system provides a matrix
of scattering coefficients for each resolution cell in the image. This allows us
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1.1. Background

Figure 1.1: SAR acquisition geometry

to retrieve the scattering mechanism in the resolution cell and gives insight
into the physical characteristics of the target. Details of PolSAR are provided
in Lee and Pottier (2009).

Interferometric SAR (InSAR) techniques use the phase difference, given by
the path difference between two SAR images acquired from different positions
(Figure 1-2). The requirement for implementing InSAR is that the two images
are coregistered and the scattering property of the scene under investigation
is the same for both acquisitions. The interferogram i.e. the phase difference
derived from SAR images includes 1. the phase contributions in range that
results due to a reference ellipsoid, commonly referred to as a flat earth phase,
2. the phase contribution from topographic variation (topographic term), 3.
the phase contribution from change in position of the target (deformation
term), 4. phase contribution introduced by the changing nature of the atmo-
sphere in space and time and 5. the phase noise introduced by the change in
target scattering properties between the two acquisitions. For topographic
height measurements, the first, the third, the fourth and the fifth term have
to be removed, being undesirable phase contributions. The flat earth phase
is usually estimated using the orbital information supplied with the SLC
images and the reference ellipsoid parameters. The deformation phase term
can be avoided by reducing the acquisition time between the two SAR images.
Whereas, atmospheric and phase term due to change in scattering property
can be avoided by using single pass interferometry. Once this is done, the
interferometric phase consists of the topographic component only. At this
stage, however, the phase values are still expressed as phase cycles modulo 2π.
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A disambiguation process termed phase unwrapping derives the continuous
absolute phase values to derive absolute topographic height measurements.
Detailed information on interferometric SAR processing can be found in
Hanssen (2001).

As described above, a PolSAR image can be used to derive different scattering
mechanisms for a ground target, whereas InSAR can be used to derive the
height of a target. In polarimetric SAR interferometry (PolInSAR), PolSAR
and InSAR are combined to vertically separate the different phase centers
or scattering mechanisms. This has various applications like separating the
height difference between tree canopy (volume scattering) and the ground
surface (single bounce) allowing for the estimation of forest parameters (Neu-
mann et al., 2010), and of ground topography estimation for vegetated regions
(Lopez-Sanchez et al., 2012).

For the application of ground deformation estimation, a differential InSAR
(DInSAR) processing is implemented by using the phase difference of images
acquired from three or more different positions. The difference between
InSAR and DInSAR is the cancellation of the topographic phase component.
In DInSAR processing two types of methods can be distinguished. The first
is using three or more images all coregistered to a common master. Here, one
pair of images is used to estimate the topographic phase term by using the
image pair with long geometric baseline and the smallest temporal baseline.
This in turn is subtracted from the other image pair used to estimate the
ground deformation phase term. Alternatively, an external DEM can be
used to simulate the topographic phase component. This in turn can be
subtracted from the interferogram to generate the deformation phase term.
In this case at least two SAR images are required. Once all the undesirable
phase terms have been accounted for, the wrapped phases can be unwrapped
and converted to ground deformation values. In classical DInSAR the atmo-
spheric phase term, the phase noise introduced from DEM or from orbital
errors and changes in scattering properties of the target are not corrected for.
Hence, classical DInSAR was only able to measure deformation resulting from
large ground movements that arise from natural disasters such as earthquakes.

Various research has been undertaken to demonstrate the successful results of
DInSAR in monitoring the earths surface deformation caused by subsidence,
landslides, earthquakes and volcanism (Amelung et al., 1999); (Colesanti and
Wasowski, 2006); (Massonnet et al., 1993); (Zebker et al., 1994); (Amelung
et al., 2000). As useful as DInSAR measurements can be, there are specific
limitations to the use of conventional DInSAR especially if repeat pass inter-
ferometry is used. The limitations arise from three main reasons: there is
atmospheric decorrelation caused by the changing nature of the atmosphere
in time, temporal decorrelation caused by decrease of signal coherence due
to change to the scattering characteristics of the ground surface and geo-
metrical decorrelation caused by a decrease of the signal coherence due to
different viewing angles. Permanent scatterer interferometry (PSI) (Ferretti
et al., 2001) (Berardino et al., 2002) (Colesanti et al., 2003) (Hooper et al.,
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Figure 1.2: Interferometric Synthetic Aperture RADAR acquisition geo-
metry

2004) (Kampes and Hanssen, 2004) and (Bert, 2006), a multi-temporal SAR
interferometry technique, addresses both the decorrelation and atmospheric
problems of classical DInSAR. It processes interferograms by selecting point
like scatterers (targets with very small size relative to the resolution cell)
that are coherent. The temporal decorrelation is minimal because of the
stable scattering properties of the targets and atmospheric phase noise can be
modeled and removed by using a large stack of interferograms. This allows
for the measurement of subtle deformation events in the scale of millimeters.
In contrast to classical DInSAR, where only a small number of SAR inter-
ferograms is analyzed, PSI allows to analyze a time series of interferograms.

PSI works best in urban settings with their abundant man made structures
that guarantee a dense network of reliable measurement points termed per-
sistent scatterers (PS) (Crosetto et al., 2010). In natural settings where the
number of coherent targets is low, PSI selects fewer reliable PS candidates
thus reducing the quality of unwrapping. To overcome this limitation, Fer-
retti et al. (2011) proposed SqueeSAR to enhance the capabilities of PSI
by offering to exploit distributed scatterers (DS) in addition to PS. DS are
extended radar targets such as agricultural fields that are more affected by
geometric and temporal deccorelation. This was accomplished by establishing
a statistical homogeneity test for targets to select a pixel as a DS and applying
an adaptive spatial filter to improve the signal to noise ratio (SNR) in the in-
terferograms. Moreover, it estimates the optimal differential phases from the
interferometric coherence matrix by applying phase triangulation algorithm.
SqueeSAR was able to significantly increase the measurement point density
at the cost of resolution. Perissin and Wang (2012) sought to enhance the
original PSI technique by constructing images that are most coherent with
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each other i.e. eliminating the need for each slave image to correlate uniquely
with a common master. In addition, parameters are estimated by selecting a
subset of the interferograms by weighing the interferograms based upon their
coherences and implementing spatial filter. Both algorithms use the original
PSI technique (Ferretti et al., 2001) for PS candidate selection, atmospheric
phase screen and parameter estimation. Samiei-Esfahany et al. (2016) used
integer least squares to estimate the interferometric phase of DS. This method
allowed a formal error propagation analysis from the observations to the
final estimates as it considers the mutual correlation between the differential
phases.

Recent studies exploited the polarimetric information from polarimetric SAR
satellites such as ALOS, TerraSAR-X and RADARSAT to increase the density
of deformation measurement points. These polarimetric PSI techniques fo-
cused on identifying and relating the co-polarization phase difference between
the interferograms to the scattering mechanisms of different scatterers. Differ-
ent threshold values are applied to the phase difference values for selecting PS
candidates (Samsonov and Tiampo, 2011). Also the techniques explored the
available polarimetric space to optimize the parameters for selecting PS can-
didates (Navarro-Sanchez et al., 2010), (Navarro-Sanchez and Lopez-Sanchez,
2012), (Iglesias et al., 2014) and applied temporal polarimetric statistics
to carry out spatially adaptive filter to DS candidates in PSI applications
(Navarro-Sanchez et al., 2014). These methods were able to significantly
increase the measurement point density by improving the coherence of DS
just so that some of them exceed the coherence threshold in PSI analysis.
They also qualitatively evaluated the improvement in measurement point
density by comparing improvement in pixel number with a single polarization
channel PSI.

In deformation measurement using interferometric methods the primary in-
dicator of interferometric phase quality is coherence. To estimate coherence,
commonly ensemble averaging is replaced by spatial average that defines the
filter referred to as spatial filter. The estimation accuracy increases if a larger
spatial window is taken, thus increasing the number of looks. Coherence,
however can be severely biased especially if the estimation window consists
of heterogeneous pixels with different radar signatures. To mitigate this lim-
itation, Ferretti et al. (2011) and Jiang et al. (2015) used a statistical test to
select statistically homogeneous pixels. Based upon this similarity, spatially
adaptive filtering was performed thereby improving SNR of DS candidates
while preserving PS candidates. By properly selecting homogeneous pixels
within an estimation window, speckle can be removed from intensity images,
interferometric phases can be filtered and coherence values can be properly
estimated (Ferretti et al., 2011). In this regard, several studies attempted to
exploit polarimetric information to identify homogeneous pixels to be used
in the spatially adaptive filtering for the removal of speckle and estimation
of coherence. Lee et al. (1999a) proposed to select similar pixels by using
a series of edge aligned non-rectangular windows, Vasile et al. (2006) used
intensity driven neighborhood region growing based upon the image intens-
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ity. Recently, Deledalle et al. (2015) used non-local means with weighted
maximum likelihood estimation to reduce speckle and estimate coherence.
Most methods, so far, focused on intensity statistics of the pixels without
considering the scattering mechanism.

To increase the number of candidate points in a natural environment the
effect of decorrelation in DS was mitigated by applying eigenvalue decompos-
ition to the DS coherence matrix (Fornaro et al., 2015) (Cao et al., 2016).
This helped to select the dominant scatterer within the resolution cell to
improve the coherence estimate and interferometric phase quality. The effect
of polarimetry on the selection of stable scattering mechanisms and the
effect of interference of individual scattering mechanisms and their effect on
coherence estimation were to be investigated to enhance the results.

1.2 Problem statement

The main problem statement addressed in this research is: ”How can po-
larimetric diversity in SAR images be exploited to improve the quality of
deformation measurement?”. The main problem statement is divided into
three specific problems which was used to formulate research questions and
objectives. The specific problem statements are:

1. Decorrelation in natural environments
DInSAR is an established and well studied method to estimate ground
deformation, however obtaining accurate measurement in a natural en-
vironment has been a challenging task due to limited number of coherent
targets. The problem is even more severe for space-borne sensors with
temporal baseline spanning several weeks. In this case, finding high
density measurement pixels that have phase quality at a sufficient level
is a challenge and is often impossible. In the literature, polarimetric
optimization routines were applied to polarimetric data to determine
the polarization state that is least affected by decorrelation. Significant
improvement in measurement points was reported for mostly urban
scenes. The performance of the polarimetric optimization methods
for DInSAR applications in completely natural environments, however,
has not been previously investigated. Moreover, the reliability of the
different optimization methods applied on DS with multiple vertical
phase centers as found in vegetated regions has not been addressed.
This could be investigated to potentially improve the number of meas-
urement points in densely vegetated regions. Moreover the bias of each
coherence optimizer needs to be investigated before validating with
in-situ measurements to quantify the improvement that are provided
by polarimetric optimization methods.

2. Low signal to noise ratio of distributed scatterers (DS)
To improve the signal to noise ratio of DS interferograms while pre-
serving the interferometric phases of PS candidates, it is important
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that spatially adaptive filtering methods are adopted to maintain ho-
mogeneity among DS pixels used in the estimation window. This is
important to minimize bias. Most literature addressed the problem of
selecting statistically homogeneous pixels by considering only the intens-
ity statistics. Scattering mechanisms, however, can provide the basis
for establishing stationarity in addition to intensity statistics of the
pixels for a higher accuracy in selecting homogeneous pixels. Scattering
model based spatially adaptive filters that were previously proposed
showed shortcomings in the estimation of scattering mechanisms. In
particular, the coherence estimated from these filters was biased. An
unbiased spatially adaptive filter needs to be devised that can reduce
speckle in intensity images, filter the phases of DS candidates while
preserving the phase of PS candidates and properly estimate coherence.

3. Low coherence of distributed scatterers (DS)
Distributed scatterers are characterized by multiple scatterers existing
without a dominant scatterer inside a resolution cell. Identification of
coherent scatterers and how they affect the coherence estimate of the
pixel should be investigated.

By addressing these problems the quality issues that are limiting polarimetric
differential interferometric analysis are expected to be mitigated.

1.3 Research objectives and questions

This PhD research focuses on exploiting the polarimetric diversity in fully
and partially polarized SAR data to improve the quality of deformation
measurement. The specific objectives are:

1. First Objective: To evaluate the improvements from polarization
optimization methods in a natural environment.

This objective uses fully and partially polarized SAR images to apply
polarimetric coherence optimization to improve the coherence of dis-
tributed scatterers. To understand the effect of polarimetric coherence
optimization in vegetated areas to potentially measure deformation over
vegetated regions. To investigate the bias from each optimizer by using
Monte-Carlo simulation for each optimization method. Comparing the
derived deformation from each optimizer to that of terresterial GPS
measurement. The first objective attempts to answer the following
research question: ”Can polarimetric coherence optimization be used to
reliably improve the quality of deformation measurement in a natural
environment?”

2. Second Objective: To exploit polarimetric diversity in PolSAR data
to select statistically homogeneous pixels that are suitable for estimat-
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ing the coherency matrix.

This second objective devises a spatially adaptive filter that is based
upon the scattering mechanism to determine neighborhood pixel homo-
geneity. It focuses on devising spatially adaptive filter that is implemen-
ted for filtering speckle from intensity images. It is extended to filtering
interferometric phase and coherence estimation in the third objective
below. An unbiased target decomposition method is investigated and
implemented. Furthermore, methods that minimize the estimation
bias for the polarimetric covariance matrix are derived. The developed
method is validated by comparing it with state of the art spatially
adaptive filters on both simulated and real PolSAR data. In the second
objective the following research question will be answered: ”How can
polarimetric information be used to devise spatially adaptive filter that
is suitable for properly estimating coherency matrix?”

3. Third Objective: To improve the coherence estimate of DS candid-
ates by removing incoherent scatterers.

This third objective aims to increase the density of measurement points
by exploiting DS candidates in addition to PS candidates in PSI ana-
lysis. It extends the scattering mechanism based spatial adaptive filter
derived in the second objective to estimate the interferometric coherence
matrix. It develops a method to identify DS candidates by analyzing
the interferometric phase entropy. Moreover, it applies eigenvalue de-
composition to the interferometric coherence matrix to identify the
most dominant scatterer within the resolution cell. The interference
pattern of the secondary scatterers with the dominant scatterer within
the resolution cell is investigated to remove incoherent scatterers and
improve the estimation of coherence. In this objective the following
research questions are answered: ”Which polarimetric parameter can be
used to differentiate permanent scatterers from distributed scatterers?
How can the noisy scattering mechanisms within a resolution cell be
eliminated to improve the interferometric coherence estimate?

1.4 Thesis outline

This thesis is organized into six chapters. Besides the introduction, theoretical
background and synthesis chapters the three technical chapters each focus on
one of the above objectives. They are all based on ISI journal articles that
are published or currently undergoing review for publication.

� Chapter 1 gives the general introduction to the thesis. It underscores
the importance of phase quality in displacement measurement. Based
on this the research objectives and research questions are introduced.
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� Chapter 2 introduces the theoretical basis for the methods used
through out the dissertation.

� Chapter 3 presents polarimetric DInSAR in an arid natural environ-
ment. It evaluates the reliability of polarimetric optimization techniques
for displacement measurement in a completely natural environment.

� Chapter 4 introduces a scattering mechanism based spatially adaptive
filter suitable for removing speckle, filtering interferometric phases and
estimating coherence.

� Chapter 5 introduces a scattering mechanism based DS processing
method for PSI applications. It derives a DS selection parameter and
introduces a method that adaptively removes incoherent scatterers
within the resolution cell to improve coherence estimate.

� Chapter 6 summarizes the results obtained from this research and
answers the research questions presented in the introduction. Reflection
on the provided conclusions are presented and recommendations are
also offered.
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Chapter summary

This chapter presents the theoretical background of the different PolSAR
and PolInSAR analysis methods used throughout this dissertation. It gives
a brief mathematical representation of the different methods implemented
through out the dissertation.
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2.1 Introduction

This chapter presents the theoretical and mathematical background for the
different methods discussed in this dissertation. Section 2.2 of introduces
electromagnetic wave polarization and explains the link between electromag-
netic wave polarization and the different polarization channels obtained from
different PolSAR sensors. The concepts described in this section are applied
in Chapters 3, 4 and 5. Section 2.3 introduces the PolSAR data statistics
which serves a background for Chapter 4. Section 2.4 introduces vector
interferometry and describes the three polarimetric optimization methods
employed in Chapter 3 whereas Section 2.5 describes the polarimetric target
decomposition method used in Chapters 4 and 5.

2.2 Polarimetric SAR

2.2.1 Wave Polarization

The fundamentals of SAR polarimetry are based upon Maxwell’s equations

(Stratton, 1941). It derives the wave equation for the electric field (
−→
E ) with

the electric and magnetic permeability of vacuum as ǫ0 and µ0 respectively and
the electric and magnetic permeability of the media as ǫr and µr respectively
in an isotropic, homogeneous, free media as:

∇2−→E (−→r , t) + k2
−→
E (−→r , t) = 0 with kw =

ξ
√
ǫrµr

c0
. (2.1)

Where, ∇ is a Laplace operator, kw is the wave number, ξ is the angular
frequency and c0 is the speed of light. The equation in (2.1) is simplified to
derive the monochromatic time-space electric field as:

−→
E (−→r , t) = Re{−→E 0e

jξt}. (2.2)

Here j =
√
−1. The electric field can be represented in the in the Cartesian

coordinate system [x, y, z] with the direction of propagation defined as z.
Hence, the electric field vector as a function of time is represented in the
vector form as:

−→
E (z, t) =





E0x cos (ξt− kwz + δx)
E0y cos (ξt− kwz + δy)

0



 . (2.3)

Here, δx and δy represent constant phase terms and E0x and E0y are the
amplitude of the electric field in the x and y direction. Three polarization
types can be defined (Lee and Pottier, 2009).
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1. Linear polarization: δ = δx − δy = 0

The electric field is a sine wave defined by a plane oriented at an angle
ψ with the x axis.

2. Circular polarization: δ = δx − δy = π
2 + kπ and Eox = Eoy

The electric field rotates in a circular manner around the z axis.

3. Elliptical polarization: otherwise

The electric field traces a helical path around the z axis.

Since the 3D helical path is difficult to analyze and represent a fixed position
along the direction of propagation is defined as z = z0. In this case, the para-

metric relation between the
−→
E (z0, t) components in time follow the equation

of an ellipse, referred to as the polarization ellipse. The polarization ellipse
defines the electromagnetic wave polarization.

2.2.2 Polarization ellipse

The shape of the polarization ellipse and the polarization state of an elec-
tromagnetic wave can be characterized by three parameters. These are the
ellipse amplitude (A), the ellipse orientation angle (ψ) and the ellipticity (χ).
A is determined from the ellipse axis as:

A =
√

E2
0x + E2

0y. (2.4)

The ellipse orientation angle ψ ∈
[−π

2 ,
π
2

]

is defined by the angle between the
x axis and the ellipse major axis.

tan 2ψ = 2
E0xE0y

E2
0x − E2

0y

cos δ. (2.5)

Where δ = δy − δx. The ellipticity of the polarization ellipse |χ| ∈
[

0, π4
]

is
given as

tan 2χ = 2
E0xE0y

E2
0x + E2

0y

sin δ. (2.6)

The time dependent orientation of the electric field vector and its sense of
rotation can be obtained from the sign of χ and the direction of propagation.
To describe the wave polarization using a minimum amount of information
the Jones vector is used. The Jones vector is defined from the electric field
vector

−→
E (z0) using the polarization ellipse characteristics ψ and χ as:

E(x, y) = Ajτ
[

cosψ − sinψ
sinψ cosψ

] [

cosχ
j sinχ

]

. (2.7)
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Figure 2.1: Polarization ellipse.

Here, τ represents the absolute phase term at t0. The main advantage of
using polarimetry is once a wave polarization state is defined in a basis it can
be transformed to any other linear, elliptical or circular polarization basis,
thereby expanding the observation space. In this regard, the Jones vector
initially expressed in the Cartesian basis x and y can be transformed to an
arbitrary polarization state (u, p) by using special unitary transformation
matrices (U2) as:

−→
E (u, p) = [U2](x,y) →(u,p)

−→
E (x, y). (2.8)

The special unitary transformation matrix [U2] is a 2× 2 complex unitary
matrix given as:

[U2] =

[

cosψ − sinψ
sinψ cosψ

] [

cosχ j sinχ
j sinχ cosχ

] [

ejτ 0
0 e−jτ

]

(2.9)
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Hence, given the Jones vectors of the incident and backscattered wave EI
and ES respectively, the scattering process occuring at the target is derived
as:

ES = S EI . (2.10)

S is the 2× 2 complex matrix called the scattering matrix or Sinclair matrix
that contains the scattering coefficients of the target. Fully polarimetric SAR
sensors measure the scattering matrix termed Sinclair matrix S. For a single
pixel it equals:

S =

[

SHH SHV
SV H SV V

]

, (2.11)

where the complex scattering coefficient SXY indexed as X,Y = (H,V ) rep-
resents the horizontal (H) and vertical (V ) polarization states, respectively.

2.3 Polarimetric SAR and Polarimetric interferometric
SAR statistics

The statistical characteristics of the intensities, the phase and coherence
are essential for PolSAR and PolInSAR (Lee and Pottier, 2009). In SAR
polarimetry, S is represented by the target scattering vector k. Assuming
reciprocity i.e. SHV = SV H , the linear target scattering vector of a given
scattering matrix is given in the monostatic case as:

k =
[

SHH
√
2SHV SV V

]T
(2.12)

where T designates a matrix transpose (Lee and Pottier, 2009). In distrib-
uted scatterers, the target scattering vector k (2.12) can be modeled by a
multivariate complex circular Gaussian distribution (Lee et al., 1994b) given
as:

pk(k) =
1

π3 | C | exp(−k
†C−1k). (2.13)

Here, C = E{kk†} is the covariance matrix which is Hermitian positive semi-
definite and |C| is the determinant of the covariance matrix. For each complex
element of k the real and imaginary parts follow the circular Gaussian pdf.
Since a mathematical expectation of the covariance matrix can’t be directly
calculated but estimated, a stationarity and ergodicity assumption is used to
estimate the covariance matrix by using a moving window average as:

Z = 〈kk†〉 = 1

N

N
∑

i=1

kk†. (2.14)
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Here, N is the number of looks. The probability density function of the
estimated covariance matrix is given as:

pNZ (Z) =
NqN |Z|n−q exp[−NTr(C−1Z)]

K(N, q)|C|N
, (2.15)

where K(N, q) = π0.5q(q−1)Γ(N), ...,Γ(N − q + 1), Γ is the Gamma function
and q is the dimension of k. For fully polarized PolSAR data acquired in
monostatic configuration q = 3 and for single baseline PolInSAR data q is 6.
The phase difference for the off diagonal elements of the covariance matrix
can be estimated as:

ψN = arg

(

1

N

N
∑

i=1

k(i)k(i)∗
)

. (2.16)

Here, * is the complex conjugate. The phase pdf as a function of number of
looks as derived by (Lee et al., 1994b) is given as:

P
(N)
ψ (ψN ) =

Γ(N+1
2 )(1− |ρ|2)Nβ

2
√
πΓ(N)(1− β2)

+
1− |ρ|2)N

2π 2
F1(N, 1; 0.5;β

2), (2.17)

where, ψN ∈ [−π, π], β = |ρ| cos(ψN − θ) and 2F1(N, 1; 0.5;β
2) is the hyper-

geometric function. (2.17) depends only on N and the complex correlation
coefficient |ρ| which is the coherence between the corresponding polarization
channels. The peak of the distribution is assumed at ψN = θ . The phase
pdf becomes narrower when N is increased indicating the phase quality is
improved as a function of number of looks and as long as the data does not
deviate from the homogeneity assumption used in deriving 2.14. This forms
the basis for deriving a spatially adaptive filter presented in chapter 4, first
derived to estimate the PolSAR covariance matrix and later extended to the
interferometric case in chapter 5.

2.4 Polarimetric SAR interferometry

Fully polarimetric SAR data can be represented with the target scattering
vector k̃ using the Pauli basis, by assuming reciprocity (Lee and Pottier,
2009),

k̃i =
1√
2

[

SHHi
+ SV V i

SHHi
− SV V i

2SHV i

]T
. (2.18)

In dual polarized SAR data, the target scattering vector k̃i reduces to:
k̃i =

1√
2
[ SHHi

+ SV V i
SHHi

− SV V i ]
T
in the co-polar configuration (HH VV)

or k̃i = [ SHHi
2SHV i ]

T
in the cross polar configuration (HH HV), where

16



2.4. Polarimetric SAR interferometry

i ∈ [1, 2, ..., n] is the image number for a multi-image acquisition (Ji and Wu,
2015). The polarization channels SXY are indexed as X,Y = (H,V ) and T

is the matrix transpose. The 6× 6 Hermitian matrix T6 contains both the
polarimetric information contained in each image and the interferometric
information of each pair.

T6 = 〈KK†〉 =
[

Tii Ωij
Ω†
ij Tjj

]

,with K =
[

k̃i
T

k̃j
T
]T

. (2.19)

Where † denotes a matrix conjugate transpose and 〈〉 represents the temporal
or spatial averaging. Tii and Tjj are the coherency matrices related to images
i and j, Ωij(i 6= j) is the polarimetric interferometric correlation matrix. In
this thesis, coherency matrix represents only polarimetric information whereas
coherence matrix used in Chapter 5 represents interferometric information.
The polarization dependent interferometric coherence is given as:

γ(ωi, ωj) =| γ | eiφ =
ω†
iΩijωj

√

(ω†
iTiiωi)(ω

†
jTjjωj)

. (2.20)

Where, ω is the complex unitary vector that is used to characterize the
difference in polarized wave scattering. The scattering coefficient (Si) in the
selected polarization state can be obtained by projecting the k̃i onto the
selected polarization state i.e. Si = ω†

i k̃i. Si has all the characteristics of
single channel SAR image.

2.4.1 Polarimetric Optimization

Polarimetric optimization aims to find a unitary projection vector ω with four
degrees of freedom that gives the highest interferometric coherence (2.20),
i.e. the polarization state that is least affected by decorrelation. In DInSAR
applications the assumption ωi = ωj = ω is made to avoid arbitrary phase
components that emerge from using two different scattering phase centers
for each pair of images (Colin et al., 2006). The polarimetric optimization
methods described in this chapter differ on two main aspects. The first
aspect is the polarimetric observation space. The second aspect is the way
the polarimetric stationaity is treated in the methods. The polarization
observation space is essential to explore the target response to find the
polarization state that is least affected by deccorelation. For completely
coherent distributed media, the polarimetric coherency matrix for each
PolSAR image in a multi-baseline configuration will have similar coherency
matrix if the temporal and geometric baseline is very short. However, in a
repeat pass interferometric configuration especially from spaceborne sensors
this is difficult to fulfill. This leads to different optimization results. The three
polarimetric optimization methods (BEST, JD and ESM) are introduced
in the single baseline case, whereas extension is provided as well to the
multi-baseline case.
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2. Theoretical background

2.4.1.1 BEST Method

This method focuses on finding the linear polarization channel that yields
the highest interferometric coherence in between images (Pipia et al., 2009),
(Iglesias et al., 2014). For the single baseline case it can be summarized as:

| γ |= max{| γhh |, | γhv |, | γvv |}. (2.21)

Where | γhh |, | γhv | and | γvv | are the coherence magnitude for theHH , HV
and V V channels respectively. The interferometric phase can be obtained by
taking the phase difference of the image that provided the highest coherence.
For the multibaseline case, (2.21) can be modified to the polarization channel
that provides the highest average coherence for all interferograms in the image
stack. The BEST method is a relatively simple way to address coherence
optimization as it is limited to the linear polarization state only.

2.4.1.2 Equal Scattering Mechanism(ESM)

The polarization state ω mentioned in Section 2.4 can be represented with
parameters that resemble the physical attributes of radar targets. Hence, it
can be parameterized as:

ω =





cosα
sinα cosβeiδ

sinα sinβeiψq



 , (2.22)

with 0 ≤ α ≤ π/2 , 0 ≤ β ≤ π, −π ≤ δ ≤ π and − π ≤ ψq ≤ π.

In (2.22) α refers to the physical scattering mechanism scattering mechanism
(Lee and Pottier, 2009). β is interpreted as the orientation of the target
within the radar line of sight, δ and ψq are the co-polar and cross polar phase
angles, respectively. Exhaustive search polarization optimization (Navarro-
Sanchez et al., 2014) aims at finding the optimal polarization state (i.e. ω)
by numerical optimization such as conjugate gradients (Fletcher and Reeves,
1964) to find the optimum value of α, β, δ and ψq. For quad polarization this
technique is computationally expensive, especially for large scenes involving
many images. In the dual polarization case the projection vector reduces to

ω =

[

cosα
sinαeiδ

]

, (2.23)

and optimization involves only two parameters. In this case, optimal para-
meters can be reached with reasonable computational cost. To overcome the
computational burden in a fully polarized data, the ESM technique proposed
by (Colin et al., 2006) can be adopted. This method uses the concept of
numerical radius to solve the optimization problem.
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2.4. Polarimetric SAR interferometry

Let Πij be an arbitrary s× s complex matrix. The numerical range (Stone,
1932) of this matrix is defined as:

w(Πij) = {ω̃†Πijω̃, ω̃ ∈ Cn, ‖ω̃‖ = 1} (2.24)

Here ω̃ is the polarization state in a whitened basis. Here, whitening is a
linear transformation of an arbitrary vector with known covariance matrix
into a vector with identity covariance matrix. The numerical range captures
information about Πij as a transformation, particularly about the eigenvalues
and eigenspaces of Πij . The numerical radius is the largest absolute values
of the numbers in the numerical range, i.e.

r(Πij) = max{| Z |: Z ∈ w(Πij)}. (2.25)

Hence, optimizing the coherence (2.20) is equivalent to calculating the nu-
merical radius of

Πij = T−1/2ΩijT
−1/2. (2.26)

Where T = 1
n

∑n
i=1 Tii is the average coherency matrix. The square root

of T is defined if the coherency matrix is of full rank. Consequently, the
numerical range w(Πij) defined in (2.24) is equivalent to the interferometric
coherence in a whitened basis. For similar coherency matrices, the coherence
values of the whitened basis and the original basis are also similar.

Hence the optimization problem in the original basis takes the form:

γopt = r(Πij) = max | ω̃†Πijω̃ | . (2.27)

The optimal whitened projection vector can be un-whitened using

ω = T− 1

2 ω̃. (2.28)

To extend this technique to the multi-baseline case, the iterative technique
proposed by (Neumann et al., 2008) can be adopted. This technique is based
on polarimetric stationarity assumption, i.e. similar polarimetric coherency
matrices at each end of the baseline. As opposed to the single baseline
case, the optimization criteria in this method is the maximum sum of the
whitened coherence modulus (

∑

|γ̃ij |). To start the optimization routine,
the modulus operation is canceled by introducing the phase shift variables
φij ∈ [−π, π] , φij = −φij to validate the inequality:

max
ω̃

n
∑

i=1

n
∑

j=1 6=i
γ̃ij(ω̃)e

−iφij 6 max
ω̃

n
∑

i=1

n
∑

j=1 6=i
| γ̃ij(ω̃) | . (2.29)
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2. Theoretical background

The maximum average coherence value on the right hand side is constant
whereas in the left hand side it depends upon a set of φ values. It attains the
value of the optimal coherence when φ assumes the optimal coherence phase.
Hence, the optimization method is implemented by simultaneously searching
for the optimal ω̃. ω̃ can be derived from the eigenvector associated with the
highest eigenvalue (λ) of the combined Hermitian matrix H . H is defined as:

Hω̃ = λω̃ where H =

n
∑

i=1

n
∑

j=1 6=i
Πij(ω̃)e

−iφij . (2.30)

The estimate for the optimal phase shifts are obtained from:

φij = arg(ω̃†Πijω̃). (2.31)

By reintroducing the φij into (2.30) an improved estimate of ω̃ is obtained.
To iteratively refine these estimates, the optimization process is initialized
by determining

φij = arg(Tr(Πij)). (2.32)

Here, Tr is the trace of a matrix. Hence, initializing from the trace corresponds
to a zero eigenvalue. For every iteration an improved estimate of ω̃ is
estimated and that in turn leads to an improved estimate of φij . The iterative
procedure is terminated if the difference between the highest eigenvalues
between successive iterations is small. The optimal ω̃ are converted to the
original basis by using

ω =
T−1/2ω̃

ω̃†T−1/2ω̃
, (2.33)

and the optimal coherence in the original basis is then calculated from (2.20).

2.4.1.3 Joint Diagonalization method

Another way to optimize the interferometric coherence is Joint diagonaliza-
tion based optimization (JD) described by Ferro-Famil et al. (2009). This
technique also uses the empirical symmetricalization of the whitened cross
correlation matrix Ωij , given as:

Πij = T
−1/2
ii ΩijT

−1/2
jj . (2.34)

The whitened cross correlation matrix can also be expanded by a singular value
decomposition (SVD) factorization using special unitary matrix operators as:

Πij = UDU† , UU† = I and ‖ U ‖= 1 (2.35)
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2.5. PolSAR target decomposition

Here D is an arbitrary complex square matrix and U is expressed as a function
of three orthogonal unitary vectors in the quad polarization case and two
vectors in the dual polarization case. The whitened coherence γ̃ for each of
these whitened projection vectors ω̃ is given by:

γ̃(ω̃) = ω̃Πijω̃ (2.36)

These whitened coherences correspond to the diagonal elements of the matrix
D, i.e. γ̃(ω̃) = Dii. Hence, maximizing the interferometric coherence in the

orthogonal direction is equivalent to maximizing the expression
∑3
i=1 | Dii |2

and minimizing
∑3
i,j=1 | Dij |2. The optimal set of orthogonal scattering

mechanisms that maximizes the coherence can then be determined iteratively
by using the extended Jacobi technique for simultaneous diagonalization
(Cardoso and Souloumiac, 1996).

In the multi-baseline case, we follow the same technique but instead of finding
the scattering mechanism that maximizes one set of interferograms we look
for the optimal scattering mechanism that gives the highest average coherence
in the whole stack of interferograms. In this case, as long as polarimetric
stationarity is maintained, the whitened interferometric coherence is equi-
valent to the coherence in the original basis. Hence, when using the equal
scattering mechanism, pixels that exhibit a stationary polarimetric behavior
do not need an un-whitening transformation (Navarro-Sanchez et al., 2014).
For pixels that exhibit a non-stationary polarimetric behavior JD results in a
low coherence values. Thus by using a simple coherence threshold the points
that show a non stationary behavior are discarded.

Once the optimal ω̃ is determined that gives the highest average coherence
for the interferogram stack, we can use (2.20) to calculate the coherence in
the original basis.

2.5 PolSAR target decomposition

To understand the scattering properties of a radar target, an eigenvalue
based target decomposition (Cloude and Pottier, 1997) is applied to a 3× 3
estimate of the coherency matrix T . The eigenvalue decomposition of T is
independent on the target orientation along the radar line of sight and no
a-priori information about the scene is required to derive the scattering types
occurring in the scene. T can be factorized into a matrix of eigenvalues and
eigenvectors.

T = U3ΣU
−1
3 =

3
∑

i=1

λiuiu
†
i , (2.37)

21



2. Theoretical background

Where U3 is the matrix containing three unitary orthogonal eigenvectors
U3 = [u1, u2, u3] and Σ is a 3×3 diagonal matrix with positive real eigenvalues

Σ =





λ1 0 0
0 λ2 0
0 0 λ3



. The parameterization of the eigenvector allows thee

probabilistic interpretation of the scattering process. The eigenvectors can
be further expanded by using physical parameters of targets as shown in
(2.22) i.e.

U3 =





cosα1 cosα2 cosα3

eiδ1 sinα1 cosβ1 eiδ2 sinα2 cosβ2 eiδ3 sinα3 cosβ3
eiψq1 sinα1 sinβ1 eiψq2 sinα2 sinβ2 eiψq3 sinα3 sinβ3



 . (2.38)

The dominant scattering mechanism α̃ is derived as:

α̃ =

3
∑

i=1

Piαi, (2.39)

where Pi is the probability obtained from the eigenvalues (λ) as:

Pi =
λi

∑3
i=1 λi

. (2.40)

To describe the statistical disorder of the scattering mechanisms, the scatter-
ing entropy is used, given as:

H = −
3
∑

i=1

Pi log3 Pi. (2.41)

In eigenvalue decomposition α̃ always assumes a value between 0 and 900

and H value between 0 and 1. α̃ values that are close to 0 resemble a surface
scattering, whereas α = 450 resembles a volume scatterer and α̃ = 900

indicates a double bounce scattering mechanism. Entropy values close to 0
represent a deterministic scattering mechanism and an entropy value of close
to 1 represents a random scattering where there is no dominant scattering
mechanism. Based on H and α̃, the different scattering mechanisms can be
described in the alpha-entropy plane (Cloude and Pottier, 1997).
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3Polarimetric differential SAR
interferometry in an arid natural
environment

Chapter summary

Coherence is the primary indicator of interferometric phase quality in DIn-
SAR analysis. It is an essential concept to measure deformation in natural
environments. Polarimetric optimization methods improve the coherence
estimate by selecting the polarization state that is least affected by decor-
relation. This chapter evaluates three polarimetric optimization methods
by applying them to dual and fully polarized SAR data acquired from the
ALOS satellite over a highly dynamic natural environment in Ethiopia. We
first investigate their reliability by comparing the improvement in coherence
estimates. Next, we evaluate the reliabiltiy of each optimizer in single and
double phase center scenarios and coherence optimizer bias. Finally we
compare the deformation measurement derived from each optimizer with
that of a terresterial GPS measurements.

This chapter is based on: Mullissa, A. G., Tolpekin, V., Stein, A., Perissin,
D., Polarimetric differential SAR interferometry in an arid natural environ-
ment. International Journal of Applied Earth Observation and Geoinforma-

tion 59:9–18, 2017.
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Abstract

Ground deformation measurements have contributed to a better understand-
ing of the processes and mechanisms involved in natural hazards. Those
include landslides, subsidence, earthquakes and volcanic eruptions. Space-
borne Differential Interferometric Synthetic Aperture RADAR (DInSAR) is a
well studied technique for measuring ground deformation. Quality of deform-
ation measurements, however, is often degraded by decorrelation. With the
advent of fully polarimetric SAR satellite sensors, polarimetric optimization
techniques exploiting polarimetric diversity improve the phase quality of
interferograms. In this paper, we analyzed three polarimetric optimization
methods to determine the optimal one for application in an arid natural
environment. We considered coherence decomposition in single and double
phase center scenarios. Coherence and differential phase bias associated with
each optimization method has been analyzed. We compared the derived dis-
placement values with terrestrial GPS measurements. The study shows that
polarimetric optimization increases the number of coherent pixels by upto
6.89% as compared with a single polarization channel. The study concludes
that polarimetric optimization coupled with DInSAR analysis yields more
reliable deformation results in a low coherence region.

Keywords : Polarimetric Optimization, Differential SAR Interferometry
(DInSAR), Polarimetric SAR Interferometry (PolInSAR), GPS
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3.1. Introduction

3.1 Introduction

The advent of Interferometric Synthetic Aperture Radar (InSAR) has im-
proved the accuracy and efficiency of surface deformation measurements. In
turn, these measurements have contributed to a better understanding of the
processes and mechanisms involved in natural disasters such as landslides,
subsidence, earthquakes and volcanic eruptions (Massonnet et al., 1993)
(Amelung et al., 2000). As useful as SAR interferometry can be, it is affected
by temporal decorrelation, geometric decorrelations and atmospheric effects
that all degrade interferometric phase quality (Zebker et al., 1992) (Hanssen,
2001). This in turn, governs the quality of deformation measurements in
differential interferometry.

Traditionally, interferometric phase quality is assessed by means of the coher-
ence stability (Mora et al., 2003) and the amplitude dispersion index (Ferretti
et al., 2001). Recently, with the launch of fully polarimetric SAR sensors
like ALOS PALSAR (Rosenqvist et al., 2007), RADARSAT-2 (Morena et al.,
2004) and TERRASAR-X (Buckreuss et al., 2003), studies were undertaken
that utilize the polarimetric information to find the polarization state that
can provide the highest interferometric phase quality in an InSAR data stack.
Polarimetric interferometric coherence optimization (Cloude and Papathanas-
siou, 1998) assumes either a changing dominant scattering mechanism at each
end of the baseline in an interferogram or a similar scattering mechanism.
Examples are the MSM (Multiple scattering mechanism) and the ESM (Equal
scattering mechanism) (Colin et al., 2006). Both MSM and ESM algorithms
were extended from a single baseline to include multi-baselines (Neumann
et al., 2008).

Multi-baseline coherence optimization in the context of differential interfero-
metry was introduced in Pipia et al. (2009). Navarro-Sanchez et al. (2010)
and Navarro-Sanchez and Lopez-Sanchez (2012) applied polarimetric optim-
izations on dual polarized TERRASAR-X data to increase the number of
persistent scatterer candidate points in both the amplitude dispersion index
and the average coherence. Navarro-Sanchez et al. (2014) and Iglesias et al.
(2014) compared polarimetric optimization methods to both the amplitude
dispersion index and the average coherence in the context of permanent
scatterer interferometry (PSI) using fully polarized RADARSAT-2 data. Re-
cently, Wu et al. (2015) improved the computational efficiency of polarimetric
coherence optimization by changing the four parameter optimization prob-
lem into two independent optimization problems with two parameters each.
Most literature on polarimetric optimization from space-borne repeat pass
configuration have applied differential interferometry to urban areas (Pipia
et al., 2009) (Navarro-Sanchez et al., 2014) (Iglesias et al., 2014). Validation
was done qualitatively by comparing coherence improvements with different
optimization methods. As an exception Navarro-Sanchez et al. (2010) and
Alipour et al. (2015) applied polarimetric optimization in a rural setting.

The novelty of the chapter is threefold. First, we apply coherence decom-
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3. Polarimetric differential SAR interferometry in an arid natural environment

position analysis of optimized coherences in single and double phase center
scenarios for potential estimation of deformation under a vegitation canopy.
Second, we combine coherence and phase bias associated with three coherence
optimization methods. Third we compare the deformation as estimated from
coherence optimization with terresterial GPS measurements.

The objective of this chapter was to assess, evaluate and validate polarimetric
optimization for DInSAR application in an arid natural environment. The
study area was located in the Ethiopian rift valley and both quad polarized
and dual polarized images were applied.

3.2 Test area and datasets

This study focuses on the Ethiopian section of the East African rift valley.
The study area has received scientific attention in the past because of its
suitability for studying the role of crustal extensions and magmatism when
rifting progresses to sea-floor spreading (Hammond et al., 2011). Hence, it
was selected to evaluate polarimetric optimization for DInSAR applications
in a natural environment. Within the study period the area has experienced
dike intrusions followed by a medium level earthquake (Keir et al., 2011).

Three quad polarized ALOS PALSAR images and seven dual polarized images
were used . To avoid phase aliasing, the data were oversampled twice in
range. The ALOS PALSAR sensor acquires data in L-band for both quad
and dual polarimetric data. It comprises 2400 × 13000 pixels and covers
24.3 km × 45.5 km in range and azimuth directions, respectively. It is a
natural environment that consists of bare surface, sparsely vegetated area,
densely vegetated area and smooth sandy surface. There are several GPS
sites within the vicinity of the study area (Figure 3.1), but most of the GPS
points lack the temporal overlap between the image acquisition dates. The
GPS stations with designation names Dabt, Datr, Da25 and ’Dayr’ were used
in this study.

Quad polarized data Dual polarized data.

Satellite ALOS-PALSAR (PLY) ALOS-PALSAR (PLY)
Ground resolution 3.54m× 11.55m 3.54m× 11.55m
Incidence angle 23.92◦ 23.92◦

Orbit Ascending Ascending
Temporal baseline 46 days 46 days
Dates 2008/07/25, 2008/10/25 and 2009/03/12 Same
Number of images 3 3

Table 3.1: Acquisition parameters for the ALOS PALSAR quad and dual
polarized data (co-polar and cross polar pairs) used for comparison in this
chapter.
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Figure 3.1: (a) Location map of the study area obtained from Google Earth.
The study area, covering an area of 138.24km2, was located in the Ethiopian
section of the East African rift valley. (b) False color composite image for
the study area in SAR coordinates. (Blue stands for | SHH + SV V |, green
stands for | 2SHV | and red stands for | SHH − SV V |. The location of the
GPS stations is indicated by red dots.

3.3 Methodology

3.3.1 Polarimetric SAR Interferometry

Fully polarimetric SAR data can be represented with the target scattering
vector k̃ using the Pauli basis, by assuming reciprocity.

k̃i =
1√
2

[

SHHi
+ SV V i

SHHi
− SV V i

2SHV i

]T
(3.1)

In dual polarized SAR data, the target scattering vector k̃i reduces to:
k̃i =

1√
2
[ SHHi

+ SV V i
SHHi

− SV V i ]
T

in co-polar configuration (HH VV)

or k̃i = [ SHHi
2SHV i ]

T
in cross polar configuration (HH HV), where i ∈

[1, 2, ..., n] is the image number for a multi-image acquisition. The polarization
channels SXY are indexed as X,Y = (H,V ) and T is the matrix transpose.
The 6× 6 Hermitian matrix T contains both the polarimetric information
contained in each image and the interferometric information of each pair.

T = 〈kk†〉 =
[

Tii Ωij
Ω†
ij Tjj

]

,with k =
[

k̃i
T

k̃j
T
]T

. (3.2)

where † denotes a matrix conjugate transpose and 〈〉 represents spatial
averaging. Tii and Tjj are the coherency matrices related to images i and
j, Ωij(i 6= j) is the polarimetric interferometric correlation matrix and *
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denotes the matrix conjugate. The polarization dependent interferometric
coherence is given as:

γ(ωi, ωj) =| γ | eiφ =
ω†
iΩijωj

√

(ω†
iTiiωi)(ω

†
jTjjωj)

. (3.3)

Where ω is the complex unitary vector that is used to characterize the differ-
ence in polarized wave scattering. In DInSAR applications the assumption
ωi = ωj = ω is made to avoid arbitrary phase components that emerge
from using two different scattering phase centres for each pair of images.
Based on (3.3), coherence optimization aims to find a unitary projection
vector ω that gives the highest interferometric coherence, i.e the polarization
state that is least affected by decorrelation. In this study three coherence
optimization methods, BEST (Iglesias et al., 2014), Joint diagonalization
based optimization (JD) (Ferro-Famil et al., 2009), (Navarro-Sanchez et al.,
2014) and ESM (Colin et al., 2006), (Neumann et al., 2008) are evaluated
and compared with the HH channel.

3.3.2 Coherence Decomposition

The interferometric coherence function can be decomposed into different
decorrelation sources as:

γ = eiφγsnr · γtemp · γgeo · γvol, (3.4)

where γsnr is decorrelation due to additive noise, γtemp is temporal decor-
relation relating to change in the scattering property of the scene, γgeo is
baseline decorrelation resulting from wave number shift due to different look
angles and γvol is the volume decorrelation (Papathanassiou and Cloude,
2001). Note that γgeo can be completely removed by range spectral filtering.
Hence, the coherence function in a simplified form equals:

γ = eiφγsnr · γtemp · γvol. (3.5)

To evaluate the performance of coherence optimization in a natural environ-
ment we consider two scenarios: a resolution cell with a single phase center
(surface scattering) and one with a double phase center (vegetation over
ground).

3.3.2.1 Single phase center

In pure surface scattering, we assume little or no depolarization so we set
γvol = 1. Hence, the polarization dependent coherence further simplifies to:

γ(ω) = eiφγsnr · γtemp. (3.6)

28



3.3. Methodology

Moreover, temporal decorrelation does not affect the coherence in a polar-
ization sensitive way. Hence, it is modelled as a scalar multiplier applied
to all optimization results indicating that polarization plays a direct role in
minimizing the signal to noise decorrelation.

3.3.2.2 Double phase center

In a vegetated region, coherence can be modeled using a two layer scattering
model like the random volume over ground (RVoG) model (Papathanassiou
and Cloude, 2001). By disregarding temporal and signal to noise decorrelation
the polarization dependent complex interferometric coherence is given in the
RVoG model as (Cloude, 2009):

γ(ω) = eiφ(z0)(γvol + (
µ(ω)

1 + µ(ω)
(1− γvol))). (3.7)

Here the volume decorrelation, γvol is a fixed complex number independent of
polarization, µ(ω) is the polarization dependent fraction of effective surface
scattering and z0 is the ground surface. Since the volume component is
complex, variation occurs in the average differential phase and coherence
amplitude. Hence, as discussed in the previous section, higher coherence
amplitude indicates a higher signal to noise ratio. In vegetated regions,
however, it contains vegetation bias and is no longer associated with the
highest phase accuracy. The coherence function is a straight line if plotted
in the complex plane with one end going through γvol and the other through
eiφ(z0). The optimization method that presents a phase center closest to the
ground and the highest signal to noise ratio is the best optimization method
in vegetated regions.

For potential estimation of displacements under a canopy we first estimate
the ground phase that is corrected for vegetation bias. This is derived using
the three stage RVoG inversion (Cloude and Papathanassiou, 2003). In this
method, a line is fitted through the coherences in the complex plane using
total least squares. The fitted line crosses the unit circle in the complex plane
twice and the ground phase is located at the intersection point closest to the
low phase center. By assuming absence of temporal decorrelation we can
apply three-image differential interferometry on the ground phase estimated
from two different pairs of images to estimate ground deformation under a
vegetation canopy.

3.3.3 Coherence Bias

The interferometric coherence estimator, however, is biased and the mag-
nitude of the bias depends upon the number of samples and the stationarity
assumption (Touzi et al., 1999). To investigate this bias, we simulate single
baseline PolInSAR data (Cloude, 2009). It starts with a known reference
interferometric coherency matrix T̃ , which is expressed using eigen decompos-
ition as T̃ = UΣU†. Here U is a matrix containing eigenvectors arranged in
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columns and Σ is a diagonal matrix containing the corresponding eigenvalues
(λ).
We simulate the polarimetric interferometric target vector by first generating
two independent Gaussian random sequences, Ga and Gb, with mean = 0
and variance = 0.5. Those are combined into a complex series followed by
scaling it by the square root of the appropriate eigenvalue (3.8). For single
baseline PolInSAR data n = 6.

e =









e1
.
.
en









, with ej =
√

λj {Ga(0, 0.5) + iGb(0, 0.5)} , j ∈ [1, 2, .., n] .

(3.8)

Next, we generate k̃ (3.2) by collecting this series into a vector e and
introducing a complex correlation by multiplying this vector with the matrix
of eigenvectors, i.e k̃ = U · e. k̃ follows a zero mean complex multivariate
circular Gaussian probability density function.

3.3.4 GPS Data Processing

The GPS station data used for validation were obtained from UNAVCO’s
data archive interface. First, station coordinates, atmospheric delay and
Earth orientation parameters were calculated using double difference phase
observations. The station daily solutions were calculated by least square
adjustment of double difference phase observables obtained from each station.
Next, the daily solutions were combined to estimate positions and repeat-
abilities for each station in the ITRF 2008 reference frame (Altamimi et al.,
2011). Seven international GNSS service (IGS) GPS stations designated,
’Adis’, ’Mali’, ’Mbar’, ’Mas1’, ’Mal2’, ’Nurk’ and ’Nklg’, were utilized to
tie the position calculations to the international terresterial reference frame
(ITRF 2008). A maximum normalized root mean square error of 0.3 was
used to ensure the quality of the observations in time. The GPS data were
processed using the GAMIT/GLOBK software suite (King and Bock, 2005).

The DInSAR line of sight (LOS) displacement vector for a right looking
satellite is resolved to its displacement components (Figure 3.2) (Hanssen,
2001) by

LOS =
[

cos θinc, − sin θinc cos(αh −

3π

2
), sin θinc sin(αh −

3π

2
)

] [

du de dn
]T

.

(3.9)

where θinc is the incidence angle, αh is the satellite azimuth vector and du,
de and dn are the LOS displacement components in the upward, eastern
and northern directions, respectively. To compare the GPS measurements
with LOS displacement the same equation was used to project the three

30



3.4. Results

(a) (b)

Figure 3.2: Projection of LOS vector into its 3 dimensional components
[du de dn]. (a) Top View (b) 3-D View. ALD refers to azimuth look direction.
((Hanssen, 2001))

dimensional GPS deformation measurements to the satellite LOS displacement
vector using:

LOSgps =
[

cos θinc, − sin θinc cos(αh − 3π
2
), sin θinc sin(αh − 3π

2
)

] [

GU GN GE

]T
.

(3.10)

The LOS vector of
[

0.914, −0.08, 0.3963
] [

GU GN GE
]T

is used
to project the GPS data to in the LOS direction. The absolute GPS positional
measurement was converted to relative GPS deformation by taking the
difference between the different acquisition dates. Once the relative three
dimensional GPS deformation was converted to the satellite LOS direction,
it was compared with the LOS deformation derived from each of the three
optimization methods.

3.4 Results

3.4.1 Coherence Optimization

To assess the performance of coherence optimization we first compare the
results of the coherence optimization for fully polarized data with coherence
from the HH channel. To minimize bias when estimating the coherence, a
9 × 9 spatial averaging window was used to calculate the interferometric
coherence values. An average coherence was obtained by averaging the estim-
ated coherence values along the time series of interferograms. To determine
the pixel phase quality a threshold of 0.7 was used. Pixels with average
coherence above the threshold present a phase standard deviation of less
than 5◦ (Touzi et al., 1999).
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Figure 3.3: Coherence histograms for different optimization methods (a) for
Quad polarized data (b) for Dual polarized data in cross polar configuration
(c) for Dual polarized data in co-polar (HH VV) configuration.

Method QuadPol cross polar (HH HV) co-polar (HH VV)
t=0.7
HH 4.89% 4.89% 4.89%
BEST 7.32% 5.17% 7.10%
JD 8.70% 5.94% 8.33%
ESM 11.78% 6.77% 8.82%

Table 3.2: Number of coherent pixels selected using a coherence threshold
t= 0.7 out of a total of 3.12×107 processed pixels for quad and dual polarized
data in cross polar configuration (HH and HV) and dual polarized data in
co-polar configuration (HH and VV).
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(a) (b)

Figure 3.4: The coherence amplitude for different cover types. ESM
provided improvement in all cover types but its improvement is significant in
sparsely vegetated areas. (a) ESM (b) HH

The coherence amplitude histogram for different optimization methods is
shown in Figure 3.3. ESM selects the largest number of coherent pixels
followed by JD and BEST (Table 3.2). Comparing the methods on their
computational time, ESM requires 531% more time than HH, whereas JD
requires 468% and BEST 232% more time than HH. Next, performance of
coherence optimization methods is assessed for dual polarized data. To do
so, dual polarization channels are synthesized from the quad polarized data.
When using the co-polar channel configuration (HH VV), ESM provided the
highest coherence followed by JD and BEST (Table 3.2). Clearly, the cross
polar configuration gives a slightly inferior result in coherence improvement
as compared to the co-polar configuration. This is because in the presence
of bare surface and sparse vegetation cover, the zero polarization phase
difference in the HH+VV channel gives a higher signal to noise ratio than the
HV channels. Overall, ESM achieves a higher coherence in both sparsely and
densely vegetated surfaces but it achieves higher coherence improvements in
bare and sparsely vegetated surfaces (Figure 3.4). These results are consistent
with other studies in rural settings (Navarro-Sanchez et al., 2010) (Iglesias
et al., 2015).

3.4.2 Coherence decomposition

The optimized complex coherences were plotted in the complex plane for bare
surface and vegetated regions (Figure 3.5). In bare and sparsely vegetated
surfaces, the optimized coherences followed a radial pattern that is consistent
with the single phase center scattering model. As a reference, we included the
low and high phase centers following the phase diversity routine described in
Tabb et al. (2002). ESM showed the highest coherence modulus followed by
JD, BEST and HH while exhibiting similar differential phases that indicate
higher signal to noise ratio. Hence, for bare and sparsely vegetated surfaces
ESM is the best optimization method.
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Figure 3.5: Coherence loci for different optimization techniques for (a) bare
and sparsely vegetated surfaces (b) densely vegetated regions. PDL and PDH
are the reference low phase center and high phase center, respectively.

In vegetated areas, ESM again provided the highest coherence amplitude
but its phase center showed a random pattern. In some areas it showed a
phase center close to the ground whereas in other areas it showed the highest
phase center when compared with the other techniques. This is because
in the RVOG model the maximum coherence can be achieved in case of a
minimum surface to volume scattering µ(ω) or of a maximum surface to
volume scattering µ(ω). Hence, the optimization method that provides the
highest coherence is not necessarily the one that is closest to the ground.
The HH-VV channel commonly associated with double bounce scattering
generally had a lower coherence amplitude than ESM optimized coherence
but it consistently yielded a phase center closer to the ground than the other
optimization techniques (Figure 3.5b). In contrast, the HH+VV channel
commonly associated with surface scattering had a higher phase center when
compared with both HH-VV and HH channels. In vegetated areas with
tree crown and trunks the HH-VV channel is dominant and achieves higher
surface to volume scattering ratio with phase center very close to the ground.
The HH+VV channel mostly scatters off the branches of a vegetation and
doesn’t achieve the highest surface to volume scattering ratio.

3.4.3 Coherence Bias

To determine which optimization method is least affected by coherence es-
timation bias, we constructed a two reference polarimetric interferometric
coherency matrices (T̃ ). The first (T̃ ) matrix has identity matrix for coherency
matrix in images i and j, i.e. Tii and Tjj = I, and Ωij is a diagonal matrix with
Ωij(1, 1) = 0.63 + 0.63i, Ωij(2, 2) = 0.49 + 0.49i and Ωij(3, 3) = 0.35 + 0.35i.

The second (T̃ ) matrix has Tii =

[

9.4 0.4 − 0.6i −0.7 − 0.3i

0.4 + 0.6i 2.4 0.2 − 0.02i

−0.7 + 0.3i 0.2 + 0.02i 0.8

]

, Tjj =
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[

9.0 1.1 − 0.6i −0.4 − 0.3i

1.1 + 0.6i 2.05 0.06 + 0.06i

−0.4 + 0.3i 0.06 − 0.06i 0.7

]

and Ωij =

[

6.0 − 0.04i 0.1 − 0.9i −0.1 − 0.6i

0.1 + 0.9i 0.8 + 0.2i 0.1 + 0.2i

−0.5 + 0.3i 0.09 + 0.09i 0.2 + 0.07i

]

.

Based on these matrices, two interferometric target scattering vectors k̃ were
simulated using the method discussed in section 3.3.3 and the mean coherence
for different number of looks was compared (Figure 3.6). In both experiments
ESM and BEST overestimated coherence whereas HH and JD underestimated
coherence for small number of looks (less than 50 looks). For large number
of looks (> 70), ESM coherence converged to its true value. When using the
same coherency matrices at each end of the baseline, coherence converged to
its true value when using a large number of looks (typically > 70). When
the coherency matrices deviate slightly as depicted in the second experiment,
ESM coherence converged to its true value for large number of looks, but
JD failed to converge to its true value even for very large number of looks
(> 100). This indicates the sensitivity of JD to having similar coherency
matrices at each end of the baseline. Moreover, if this condition is not fulfilled
the coherence derived from it is always underestimated and biased. This
effect is clearly shown by the differential phase error in Figure 3.6d.

The coherence estimated for HH and BEST depends upon the polarization
channel that provides the highest coherence. If the co-polar channels provide
similar coherence values then both the HH and BEST converge to the true
coherence value with a large number of looks. If the co-polar channels
provide different coherency values the HH and BEST coherences show large
differences. In Figure 3.6c the VV channel provided significantly higher
coherence than HH resulting in large differences between HH and BEST.
Overall, the differential phase error is smallest for ESM followed by JD,
BEST if the number of looks is large (> 70) and if the coherency matrices are
similar at each end of the baseline (Figure 3.6b). If the coherency matrices
are not similar at each end of the baseline, ESM still maintains the highest
phase accuracy, whereas JD and BEST show phase errors in the estimated
differential phases. With larger deviations between the coherency matrices,
all optimization methods yield a low coherence and differential phases show
large errors if compared to the true coherence. Hence, for the 81 looks
utilized in this study and a coherence threshold of t = 0.7, ESM is the best
polarimetric optimization method with the highest phase accuracy when
using fully polarimetric SAR data.

3.4.4 Deformation measurement

Line of sight deformation maps were generated to obtain HH, BEST, JD
and ESM interferograms. The optimized interferograms were unwrapped
(Chen and Zebker, 2002) and converted to total displacement values following
a standard DInSAR processing flow. Since the number of quad polarized
data is low it was not possible to reliably correct for atmospheric, orbital
and DEM errors. Pixels with averaged coherence values < 0.7 were masked
(Figure 3.7). Furthermore, the three dimensional GPS data were projected
into the satellite LOS direction for comparison using (3.10). The LOS In-
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Figure 3.6: (a) Coherence amplitude (mean of 106 realizations) of different
optimization methods as a function of the number of looks, True coherence
ω is the optimal coherence derived from the known coherency matrix with
optimal projection vector and True coherence (Linear) is the optimal coher-
ence calculated from the known coherency matrix using only HH, HV and
VV channels. (b) Differential phases estimated from 81 looks for different
optimization methods. (c) Coherence amplitude (mean of 106 realizations)
of different optimization methods for second reference interferometric coher-
ency matrix. (d) Differential phase estimated from 81 looks for different
optimization methods.

SAR and GPS displacements were compared in terms of their deformation
trend and correlation coefficient. For comparison it was not possible to find
pixels that co-locate exactly with the GPS location. Hence, pixels with the
nearest proximity to the GPS station and displacement standard deviation
of < 0.5cm was used for the displacement comparison. The terresterial GPS
measurement has an uncertainty of 0.14cm, 0.12cm, 0.27cm and 0.12cm at
stations Dabt, Datr, Da25 and Dayr respectively. In the displacement data, a
positive sign indicates LOS displacement towards the satellite and a negative
sign indicates displacement away from the satellite.

The LOS displacement measured by the optimization methods followed a
decreasing trend between July 25, 2008 and March 12, 2009 for station ’Dabt’
and ’Datr’ (Figure 3.8). Whereas displacement at station ’Dayr’ experienced
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Figure 3.7: Cumulative deformation maps derived from ESM (a) and the
conventional HH channel (b) inbetween July 25, 2008 and March 12, 2009.
Locations of the GPS stations are shown on the map.

an increasing trend in displacement values for all methods. This was due to
two earthquake events occuring on October 17, 2008 and February 11, 2009
that were induced by dike injection (Keir et al., 2011). The displacement
trend is consistent with the GPS data and available literature. Figure 3.8.
shows the displacement trend of ESM closely resembles the GPS data at
nearly all stations. Furthermore, it showed the highest correlation coefficient
(r) calculated by combining the different station measurements (Table 3.3).
JD displacement correlation was lower than for BEST for quad and dual
polarized data (HHHV) and for some stations displacement measurement
least resembled the GPS data and other optimization methods (Figure 3.8h
and 3.8k). This is consistent with the phase bias analysis presented in section
3.4.3. Atmospheric, orbital and DEM errors were not corrected and hence dis-
placement estimates deviated from 0.25cm to 1cm from GPS measurements.
Overall, ESM provided the highest accuracy in displacement estimation fol-
lowed by JD, BEST and HH. In future work, the analysis should be extended
to multi-temporal InSAR analysis (PSI) with more GPS stations, as this may
improve the significance of the work.

Method QuadPol cross polar (HH HV) co-polar (HH VV)
HH 0.86 0.86 0.86
BEST 0.88 0.91 0.90
JD 0.87 0.89 0.92
ESM 0.96 0.93 0.96

Table 3.3: Pearson correlation coefficient (r) between different optimization
methods and GPS data. Since a limited number of images are used to
derive the displacement values, different stations are combined to derive the
correlation coefficients. Displacement values corresponding with missing GPS
data are not included in the calculation.

37



3. Polarimetric differential SAR interferometry in an arid natural environment

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

DATES
L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

(a) (b) (c)

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−3

−2.5

−2

−1.5

−1

−0.5

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−3

−2.5

−2

−1.5

−1

−0.5

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−3

−2.5

−2

−1.5

−1

−0.5

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

(d) (e) (f)

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

(g) (h) (i)

30−08−2008 19−10−2008 08−12−2008 27−01−2009
0

0.5

1

1.5

2

2.5

3

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
0

0.5

1

1.5

2

2.5

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

30−08−2008 19−10−2008 08−12−2008 27−01−2009
0

0.5

1

1.5

2

2.5

3

3.5

DATES

L
O

S
 D

IS
P

L
A

C
E

M
E

N
T

 I
N

 C
M

 

 

HH

BEST

JD

ESM

GPS

(j) (k) (l)

Figure 3.8: Displacement time series derived from GPS and different optim-
ization methods. Lines are included in the plot for illustration purposes. Rows
display the stations Dabt, Datr, Da25 and Dayr, whereas the columns show
Quad polarized, cross polar (HH HV) and co-polar (HH VV), respectively.
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3.5 Discussion

The study showed that ESM achieved the largest improvement in both bare
and sparsely vegetated surfaces as compared to JD, BEST and conventional
HH channel. ESM, however, is formulated based on the hypothesis of po-
larimetric stationarity. When this hypothesis is not fulfilled, ESM results
in low average coherence during optimization. It should be noted that even
in this scenario it provides higher coherence than JD, BEST or HH (Figure
3.3). However, it will most likely result in a low average coherence in the
interferogram stack that is below the coherence threshold. Hence, coherence
optimization has little additional value. In densely vegetated regions the
coherency matrices at each end of the baseline differ significantly and there-
fore result in a relatively low differential phase accuracy and in a random
phase center location. Hence, in densely vegetation regions a polarization
state that provides a phase center that is close to the ground surface should
be used to derive displacement values. In this regard, HH-VV provides a
phase center that is located closer to the ground surface as shown in Section
3.4.2 even-though it may select fewer coherent pixels than the optimization
methods discussed in this chapter. If trunk structure is absent within the
vegetation canopy a coherence loci analysis should be performed to select the
polarization state that selects a phase center that is closest to the ground
surface. Moreover, to improve the optimization results, polarimetric station-
arity can be mitigated by modeling the correlation between images based on
their temporal and geometric baselines.

By using the RVoG model inversion it was possible to obtain the ground
phase by removing the vegetation bias. The ground phase is useful to obtain
geophysical parameters such as ground topography under vegetation canopy.
In theory, the ground topography extracted from RVoG inversion also includes
deformation signals. Therefore it is possible to estimate ground deformation
under a forest canopy by removing the ground topography using repeat pass
space-borne interferometry. In this study, due to the long temporal baseline,
the signal was affected by temporal decorrelation. Hence, RVoG inversion
resulted in a low coherence which could not be reliably unwrapped to derive
the ground displacement under a canopy. If temporal decorrelation could be
mitigated, however, repeat pass polarimetric differential SAR interferometry
under a vegetation canopy is feasible.

Coherence optimization in the context of DInSAR in a natural terrain has
practical uses in determining hazards from volcanic eruptions and earth-
quakes. In densely vegetated regions, even though classical DInSAR cannot
be applied because of temporal decorrelation, selective processing of coherent
pixels with stable scattering mechanism in multi-temporal InSAR context
will yield superior results as compared to conventional single polarization
channels. In multi-temporal InSAR analysis pixels are selected for parameter
estimation based on their quality. Thus coherence optimization increases
the number of pixel candidates that are available for processing because
the candidate points are denser. Consequently, denser points will give a
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more robust model fitting because of more individual connections between
candidate points making the deformation measurements more reliable.

3.6 Conclusions

We conclude that ESM provided the highest phase quality improvement,
followed by JD and BEST when optimizing quad-pol data sets in bare and
sparsely vegetated regions. In densely vegetated regions ESM attained the
highest signal to noise ratio whereas the phase center of HH-VV polarization
channel was closest to the ground surface. In addition, ESM was least
affected by phase bias as compared to HH polarization in bare and sparsely
vegetated regions. A similar trend was observed when optimizing dual
polarized data sets: the co-polar configuration performed better than the
cross polar configuration, despite reduced data dimensions. Finally, ESM
deformation results showed the highest correlation with the continuous GPS
measurements, even though DEM, orbital and atmospheric phase errors
were not corrected. Hence, polarimetric optimization coupled with DInSAR
analysis yielded more reliable deformation results as compared with HH
polarization in a low coherence region.
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4Scattering Property Based
Contextual PolSAR Speckle Filter

Chapter summary

Coherence is a phase quality indicator in InSAR analysis. To estimate
coherence, commonly spatial average commonly referred to as spatial filter is
used. The estimation accuracy increases if a larger spatial window is taken,
thus increasing the number of looks. Coherence, however can be biased
especially if the estimation window consists of heterogeneous pixels with
different radar signatures. The most common approach to do so is average
pixels that share the same property within a neighborhood window. This
procedure is called spatially adaptive filtering. Chapter 4 derives a scattering
mechanism based spatially adaptive filter that is suitable for filtering speckle
in PolSAR data and estimate coherence in PolInSAR data stack. Reliability
of the derived spatially adaptive filter is evaluated on simulated and real
PolSAR data.

This chapter is based on: Mullissa, A. G., Tolpekin, V., Stein, A., Scatter-
ing property based contextual PolSAR speckle filter. International Journal
of Applied Earth Observation and Geoinformation 63: 78–89, 2017.
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Abstract

Reliability of the scattering model based polarimetric SAR (PolSAR) speckle
filter depends upon the accurate decomposition and classification of the scat-
tering mechanisms. This chapter presents an improved scattering property
based contextual speckle filter based upon an iterative classification of the
scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector
decomposition and a fuzzy H/α classification to determine the scattering
mechanisms on a pre-estimate of the coherency matrix. The H/α classifica-
tion identifies pixels with homogeneous scattering properties. A coarse pixel
selection rule groups pixels that are either single bounce, double bounce
or volume scatterers. A fine pixel selection rule is applied to pixels within
each canonical scattering mechanism. We filter the PolSAR data and de-
pending on the type of image scene (urban or rural) use either the coarse
or fine pixel selection rule. Iterative refinement of the Wishart H/α classi-
fication reduces the speckle in the PolSAR data. Effectiveness of this new
filter is demonstrated by using both simulated and real PolSAR data. It
is compared with the refined Lee filter, the scattering model based filter
and the non-local means filter. The study concludes that the proposed fil-
ter compares favorably with other polarimetric speckle filters in preserving
polarimetric information, point scatterers and subtle features in PolSAR data.

Keywords : Polarimetric Synthetic Aperture RADAR (PolSAR), Speckle
filtering
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4.1. Introduction

4.1 Introduction

Polarimetric synthetic aperture radar (PolSAR) and polarimetric interfero-
metric SAR (PolInSAR) are useful to estimate physical parameters at the
earth surface. The SAR signal is commonly affected by speckle, arising from
the coherent superposition of a number of independent scatterers within
each resolution cell. If the size of the resolution cell is much larger than the
imaging wavelength there will be interference between individual scattering
producing speckle. For polarimetric image analysis purposes, this is charac-
terized as noise because of the complexity of the scattering process. In the
presence of speckle the polarimetric response is best taken as a random value.
To determine its probability density distribution, second order statistics
represented by the polarimetric covariance matrix have to be estimated.

PolSAR speckle filtering and information extraction rely on the applied
stochastic model for the PolSAR data. In homogeneous and stationary me-
dia, PolSAR data can be characterized by a zero mean multivariate circular
Gaussian pdf (Lee et al., 1994b). The simplest method proposed for reducing
speckle is the boxcar filter (Lee, 1980) that estimates the covariance matrix
with a moving average operation. The boxcar filter is effective in removing
speckle in homogeneous regions at the expense of loss in resolution. To
overcome this loss, Lee et al. (1999b) proposed to select similar pixels by
using a series of edge aligned non-rectangular windows, Vasile et al. (2006)
used intensity driven neighborhood region growing based on the image intens-
ity, Lee et al. (2006) proposed selecting similar neighboring pixels based on
scattering characteristics and Lopez-Martinez and Fabregas (2008) suggested
an adaptive speckle reduction based on additive and multiplicative noise
model. Further, Deledalle et al. (2015) used non-local means with weighted
maximum likelihood estimation to reduce speckle, Chen et al. (2011) de-
veloped a statistical pre-test method to select homogeneous patches and
Zhong et al. (2014) used a statistical testing to establish pixel similarity
between two patches that follow a complex Wishart distribution. Most meth-
ods, however, focused on pixel intensity statistics without considering pixel
scattering properties. An exception was Lee et al. (2006) who considered
pixel statistics and polarimetric scattering mechanisms for speckle filtering.

The scattering model based (SMB) speckle filtering method (Lee et al., 2006)
applied the Freeman-Durden model based decomposition (Freeman and Dur-
den, 1998) to determine the dominant scattering mechanism power on a pixel
by pixel basis. Unsupervised classification is initialized by grouping pixels
into clusters for each canonical scattering mechanism. These are merged into
classes for each scattering mechanism using a Wishart merge distance measure.
This method preserves the dominant scattering mechanisms of each pixel. The
following limitations require compensation. First, the Freeman-Durden model
based decomposition tends to overestimate the volume scattering component
in urban settings (Yajima et al., 2008) (Yamaguchi et al., 2011). It assumes
that all cross polarized return is due to vegetation. Rough surfaces and local
topography, however, can also cause depolarization resulting in a higher cross
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polarization return in SAR data. Hence, to achieve improved decomposition
results from the Freeman-Durden decomposition it is important to correct
for the orientation angle. This increases processing time for speckle reduc-
tion. Second, clustering the scattering classes into classes for each scattering
mechanism implies that pixels that are filtered together belong to the same
scattering mechanism. This clustering of pixels is efficient in case of relatively
accurate decomposition results and classification of scattering mechanisms.
If a pixel is dominated by noise or if its amplitude level is near the noise floor,
decomposition may lead to less accurate results (Wang and Davis, 1997).
Hence, subsequent filtering based upon this method of selection will lead
to less accurate results. Third, in Lee et al. (2006) the Freeman-Durden
decomposition is initialized with a 3×3 pre-estimate of the covariance matrix
to estimate the three main scattering mechanisms: single bounce, double
bounce and volume. This decomposition is inherently biased when using a
small number of pixel samples. Its quantification is in-sufficiently addressed
in the literature, although, Lee et al. (2008) evaluated the bias introduced
in target decomposition and concluded that parameters of the scattering
mechanism are best estimated using at least a 9× 9 multi-looking window.

The objective of this chapter is to improve the existing SMB speckle filtering
method for PolSAR data. It builds upon SMB filtering by addressing the spe-
cific limitations listed above. The proposed method uses the Cloude-Pottier
eigenvalue-eigenvector decomposition of the coherency matrix to reduce bias
in the target decomposition. Both coarse and fine pixel selection are in-
cluded to minimize the pixel selection error. It also minimizes the scattering
mechanism decomposition and classification bias by iteratively increasing the
number of looks included in estimating the scattering mechanism and refining
the scattering mechanism classification. The method is applied on both
simulated data and real PolSAR data acquired from the AIRSAR airborne
sensor acquired over Flevoland, The Netherlands and San Franscico, USA.

4.2 SAR Polarimetry

Fully polarimetric SAR sensors measure the scattering matrix (Sinclair
matrix) S. For a single pixel it equals:

S =

[

SHH SHV
SV H SV V

]

, (4.1)

where the complex scattering coefficient SXY indexed as X,Y = (H,V )
represents the horizontal (H) and vertical (V ) polarization states. In SAR
polarimetry, S is represented by the target scattering vector k. Assuming
reciprocity i.e SHV = SV H , the linear target scattering vector of a given
scattering matrix is given in the monostatic case as:

k =
[

SHH
√
2SHV SV V

]T
(4.2)
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where T designates a matrix transpose (Lee and Pottier, 2009).

For deterministic point scatterers k fully describes the scattering process. For
distributed scatterers, however, k displays a random property and is modeled
(Lee et al., 1994b) by a multivariate complex circular Gaussian probability
density function :

pk(k) =
1

π3 | C | exp(−k
†C−1k). (4.3)

Here C = E{kk†} is the covariance matrix, | C | is the determinant and
† denotes the complex conjugate transpose. Assuming stationarity and
ergodicity in the neighborhood of a pixel, an estimate of the covariance
matrix is obtained by:

Z = 〈kk†〉 = 1

n

n
∑

i=1

kk† (4.4)

where n is the number of looks used to estimate Z. The distribution of Z
is modeled by the complex Wishart probability density function (Goodman,
1963). Note that the covariance matrix can be transformed into the coherency
matrix T

T = (SU3)C(SU3)
−1, (4.5)

where SU3 = 1√
2

[

1 0 1
1 0 −1

0
√
2 0

]

is a unitary transformation matrix (Lee and

Pottier, 2009).

4.3 Scattering Property based Contextual Speckle
Filtering

4.3.1 Scattering mechanism classification

The Cloude-Pottier eigenvalue-eigenvector decomposition (Lee et al., 1999a)
is applied to correct for bias caused by the Freeman-Durden decomposition.
It is selected because it is able to derive the scattering mechanism (α) and
scattering entropy (H) without being affected by differences in the orientation
angle and no a-priori scene information is required to derive the scattering
mechanism.

Based on H and α values, pixels can be classified into their respective scat-
tering classes. The H/α plane (Figure 4.1b), however, reveals continuously
distributed H/α values, whereas the class boundaries in Figure 4.1a are
crisp. Such ambiguity presents a problem of defining class mixtures near
the boundaries. To resolve it we implemented a fuzzy H/α classification
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Figure 4.1: (a) The H/α plane showing different scattering properties, as
defined in Cloude and Pottier (1997) and Cloude and Pottier (1996). (b) The
H/α density plot derived from a simulated PolSAR data. The color scale
indicates the number of pixels per data point.

(Park and Moon, 2007) for the first filtering. This is followed by the Wishart
distance classification in the next iterations (Lee et al., 1999a).

4.3.2 Speckle Filtering

We carry out the speckle reduction in two steps. First, we derive the rules
that guide the speckle filter. This step is important to select homogenous
pixels discussed in the introduction section. Second, we iteratively refine the
scattering mechanism classification to reduce the estimation of scattering
mechanism and classification bias that arises from initializing from a small
number of looks while improving the filtering result.

4.3.2.1 Rule derivation

The fuzzy H/α classification output is defined in the H/α plane, typically
resulting in eight scattering classes. The application of the term ’classes’
in this context doesn’t imply thematic classes. A physical interpretation
of the classified output is detailed in Lee and Pottier (2009). Based upon
this interpretation, coarse and fine pixel selection are introduced. Coarse
pixel selection groups the scattering classes into single bounce, double bounce
and volume scattering mechanisms. The canonical scattering mechanisms
are derived from the fuzzy H/α classification output using the procedure
described in Ferro-Famil et al. (2002). Hence, pixels grouped as single bounce
scattering are un-filtered from pixels grouped as double bounce or volume
scattering. Similarly, pixels grouped as double bounce and volume scatter-
ing remain separate from other groups to preserve the dominant scattering
mechanism of the pixel. The brightest pixels within the single bounce and
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double bounce group larger than a 9 pixel patch are un-filtered i.e they
keep their original pixel values in order to remove isolated deterministic
point scatterers. Fine pixel selection does not group the scattering classes
to their main scattering mechanisms, i.e pixels from the eight scattering
types remain separate from other classes. Hence, they are filtered separ-
ately even if pixels share the same canonical scattering mechanism. The
brightest pixels from Class 1 (deterministic dihedral scattering) and Class 3
(Bragg scattering) larger than a 9 pixel patch remain un-filtered, whereas the
other scattering types are filtered from pixels within the same scattering class.

Depending upon the image scene environment (urban or rural) we can either
use coarse selection, fine selection or a combination of the two to obtain
the optimal output. For pixels thus selected, we use the local minimum
mean squared error estimator (LMMSE) that is commonly used to estimate
the filtered coherency matrix (Lee et al., 1999b). Depending on the applied
selection rule, pixels within the filter window belonging to the same scattering
type are therefore filtered as:

T̃ = 〈T 〉+ b(T − 〈T 〉). (4.6)

Here T̃ is the result of speckle filtering and 〈T 〉 is the average single look
coherency matrix of pixels with the same scattering class as defined in the
filtering rule and b is a weight assigned during filtering. This weight is
derived from the total backscattered power I = tr(T ) (Lee et al., 1999b)
and evenly applied to each component of T . This procedure is based upon
the assumption that the noise is multiplicative, with unity mean that is
uncorrelated with the image.

4.3.2.2 Iterative refinement

The filtering procedure described in the preceding section is initialized using a
3× 3 window for single look datasets. If the input PolSAR coherency matrix
is a rank 3 matrix we can decompose and classify without further averaging.
The success of filtering depends upon accurately determining and interpreting
the scattering mechanism and an accurate classification of the scattering
type. As shown in Lee et al. (2008), estimates of both H and α are close to
their true value if the number of looks equals 81 or above. Unfortunately,
point scatterers are smoothed when initializing with such a large window size.
To correct for this, we initialize with the 3 × 3 window average to obtain
the approximate H/α values and the initial fuzzy H/α classification of the
scattering types and gradually increase the filter window size to preserve
point scatterers while improving the scattering mechanism estimate and
classification output. This classification output is used to adaptively filter
the single look T . Next, we use the adaptively filtered covariance matrix
to derive new H/α values and a new Wishart distance classification output.
We then use the Wishart classification output to adaptively filter the single
look T using a 5× 5 window. This procedure is repeated until the desired
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Figure 4.2: Methodology flowchart for the proposed method.

window is reached and the number of pixels that switch scattering classes
is below a threshold ρ. In this study a ρ < 10% is used. For most data it
takes 4-6 iterations for the filtering process to terminate. We used an 11× 11
final window to have sufficient pixels for effective filtering. The methodology
flowchart for the proposed method is given in Figure 4.2.

4.4 PolSAR data simulation

Speckle is present in all SAR data. Accurate quantitative evaluation of
speckle filtering is only possible if a noise free image is available, which is
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the case for simulated images. Hence, to apply quantitative evaluation of the
proposed speckle reduction method we adapted the Monte-Carlo PolInSAR
simulation routine proposed by Cloude (2009) to PolSAR data. In addition,
we reproduced the complex image structure in real PolSAR data by simulat-
ing a random image morphology.

C8

C4

C1

C9

C7

(a) (b)

C1

C7

C4

C6

C5

C8

C9

C2

(c) (d)

Figure 4.3: Pauli images of simulated PolSAR data. (a) Reference image
derived from five scattering classes. The corresponding scattering classes
are labeled as defined in Table 4.2. (b) Simulated PolSAR data derived for
five scattering classes. In the images red color represents |SHH − SV V |2,
blue color represents |SHH + SV V |2 and green color represents |2SHV |2. (c)
Reference image derived from eight scattering classes. The corresponding
scattering classes are labeled as in Table 4.2. (d) Simulated PolSAR data
with the same color as in (b).

Following (4.3) we assumed that the stochastic nature of the scattering vector
k is completely determined by the covariance matrix C. We first defined a
coherency matrix to be used as a reference. Since the coherency matrix is a
Hermitian positive semi-definite matrix, we factorized the reference coherency
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matrix T̃ to its respective eigenvalues and eigenvectors.

T̃ = UΣU†. (4.7)

Here, U contains the eigenvectors arranged in columns and Σ is a diag-
onal matrix containing the corresponding eigenvalues λ. The eigenvalues
and eigenvectors generate a sequence of n dimensional complex vectors k,
with coherency matrix T . We next generated two independent real random
sequences following Gaussian distributions, Ga and Gb with mean=0 and
variance=0.5 and combined them into a complex series after scaling it by the
square root of the appropriate eigenvalue.

e = {ej}, j = 1, ..., n, ej =
√

λj {Ga(0, 0.5) + iGb(0, 0.5)} . (4.8)

Next, we generated k by collecting Ga and Gb into a vector e and introducing
a complex correlation by multiplying this vector with the matrix of eigen-
vectors, i.e k = U · e. The vector k follows a zero mean complex multivariate
Gaussian pdf as in (4.3).

Finally, we generated a random image morphology with different features, by
using different T̃ matrices for different scattering classes extracted from the
four look AIRSAR data (Table 4.1). We used a Markov random field (MRF)
following the Gibbs distribution (Boykov et al., 2001). The parameters used
to simulate a random image morphology are shown in Table 4.2.

As stated in different speckle filtering literature, a speckle filter is supposed to
remove speckle noise from distributed scatterers while preserving edges and
point scatterers in a PolSAR image (Lee et al., 2009). Hence, the selection of
a deterministic scatterer class and a varying number of distributed scatterers
is reasonable for the evaluation of PolSAR speckle filters. Hence, two simu-
lated images were generated by taking five scattering classes (Figure 4.3a)
and eight scattering classes (Figure 4.3c). Of these classes one represents a
deterministic Bragg scattering and the others represent a distributed scat-
tering with different α and H values. Speckle was added to the distributed
scattering classes using (4.8) but no speckle was added to the deterministic
Bragg scattering.

4.5 Datasets

To test the performance of the proposed method in addition to the simu-
lated data, real airborne SAR data from the JPL/NASA AIRSAR airborne
polarimetric SAR sensor (Figure 4.6a and 4.7a) was used. The AIRSAR
sensor acquires fully polarimetric data C, L and P band. In this study the
L band was selected to evaluate the proposed speckle filtering method. A
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Scattering
class Coherency matrix α H A

C1





5.56 −0.03 − 0.36i 0.47 − 0.24i
−0.03 + 0.36i 6.64 0.24 − 0.20i
0.47 + 0.24i 0.24 + 0.20i 4.53



 56.6o 0.98 0.14

C2





7.79 −0.03 − 0.50i 0.56 − 0.30i
−0.03 + 0.50i 5.38 0.20 − 0.17i
0.56 + 0.30i 0.20 + 0.17i 4.38



 50.1o 0.97 0.12

C4





14.69 2.59 − 0.92i 1.98 − 0.85i
2.59 + 0.92i 25.39 4.55 + 0.20i
1.98 + 0.85i 4.55 − 0.20i 5.12



 57.8o 0.8 0.57

C5





10.95 0.420 − 0.89i 1.17 − 0.65i
0.420 + 0.89i 7.51 0.83
1.17 + 0.65i 0.83 3.29



 45.7o 0.89 0.42

C6





10.99 −0.45 − 0.69i 0.85 − 0.73i
−0.45 + 0.69i 3.38 0.21 + 0.01i

0.85 + 0.21 − 0.01i 2.05



 32.8o 0.76 0.28

C7





990.02 4.97 7.04
4.97 0.02 0.04
7.04 0.04 0.05



 - - -

C8





29.95 23.04 + 0.79i 4.83 − 2.47i
23.04 − 0.79i 29.99 5.21 − 3i
4.83 + 2.47i 5.21 + 3i 3.23



 46.9o 0.44 0.57

C9





5.40 −1.14 − 0.34i 0.27 − 0.33i
−1.14 + 0.34i 0.56 −0.01 − 0.09i
0.27 + 0.33i −0.01 − 0.09i 0.16



 18.3o 0.26 0.4

Table 4.1: Reference coherency matrix (T̃ ) for each simulated scattering
class (Foucher and Lopez-Martinez, 2014). The coherency matrix in C7 is
rank 1 so α, H and A are not defined.

Parameter Value
Prior energy model Potts model
Neighbourhood system Second order with inverse distance weights
Number of iterations 200
Cooling schedule Tk+1 = Tk · σ where To = 10 and σ = 0.9
Starting point Uniform random
Point scatterers randomly added

Table 4.2: MRF image morphology simulation parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Speckle filtering results of false color composite in Pauli basis
based on simulated data. The speckle free and speckled simulated data
is shown in Figure 4.2. (a) Pauli channels created from IDAN filter using
window size row of 80 (b) Pauli channels created from Scattering model
based filter with 9× 9 window. (c) Pauli channels for refined Lee filter with
9 × 9 window. (d) Pauli channel for Non-local means with 21 × 21 search
window, patch size of 5× 5 and threshold coefficient = 20. (e) Pauli channel
for proposed method 11× 11 window 5 iteration. (f) Pauli channel for the
ground truth image.

1024 × 900 subset of AIRSAR data of San Francisco, USA covers mostly
urban area whereas a 1024 × 750 subset of Flevoland, Netherlands covers
almost entirely rural land. The acquisition parameters for the AIRSAR
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sensor are summarized in Table 4.3. The ground truth data from 14 feature
types for the Flevoland scene was adopted from Lee et al. (2001).

Parameter Value
Sensor AIRSAR airborne sensor
frequency/wavelength 1.26GHZ/23cm
Polarization Full
Range resolution 3.75m
Swath width (nominal) 10km
Off-Nadir angle (normal) 20− 600

Table 4.3: JPL/NASA AIRSAR airborne polarimetric SAR sensor acquisi-
tion parameters.

4.6 Results

4.6.1 Simulated data

To quantitatively evaluate the performance of the different speckle filtering
methods, we calculated the absolute error introduced from different speckle
filtering methods. Error is defined as the deviation of an estimated para-
meter from its true value. The average error of α for simulated scattering
class (i) is obtained as Error(i) = mean{| α̃(i) − α(i) |}, where α(i) is the
estimated physical scattering mechanism and α̃(i) is the reference scattering
mechanism. Similar equations apply to the bias of H and A, respectively.
The proposed method compares favorably with the other speckle filters in
preserving polarimetric information (Table 4.4 and 4.5).

Method α H A ENL EP
IDAN 2.109 0.05 0.068 14.32 0.904
Lee 3.1716 0.072 0.137 5.861 0.9518
SMB 1.554 0.053 0.118 1.4828 0.6233
NL 4.373 0.0649 0.103 7.4298 0.9827
New 1.6817 0.022 0.0428 15.014 0.978

Table 4.4: The absolute error in α, H and A estimates from using different
speckle filtering methods and the ENL and EP calculated from different
speckle filtering methods on simulated five scattering class PolSAR data. The
error values for α are in degrees.

Next, we determined the equivalent number of looks (ENL) for each distrib-

uted scattering class, ENL(i) =
(

ζ(i)
τ(i)

)2

, where ζ(i) is the mean and τ(i) is

the standard deviation of W for class i and took the average of individual
class ENL values. High ENL values indicate a better performance of removing
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Speckle filtering results of false color composite in Pauli basis
based on simulated data from 8 scattering classes. The speckle free and
speckled simulated data is shown in Figure 4.2. (a) Pauli channels created
from IDAN filter using window size row of 80 (b) Pauli channels created
from Scattering model based filter with 9× 9 window. (c) Pauli channels for
refined Lee filter with 9× 9 window. (d) Pauli channel for Non-local means
with 21× 21 search window, patch size of 5× 5 and threshold coefficient =
20. (e) Pauli channel for proposed method 11× 11 window 5 iteration. (f)
Pauli channel for ground truth image.

speckle from homogeneous regions. The proposed method compares favorably
with all other evaluated methods with respect to the described 5 accuracy
measures in reducing speckle from homogenous regions.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Speckle filtering results of false color composite in Pauli basis
based on AIRSAR airborne L band data acquired over San Francisco. (a)
Original 4 look SAR data (b) 80 window row IDAN filter. (c) Refined Lee
filter with 9× 9 window. (d) Scattering model based filter with 9× 9 window.
(e) Non-local means with 21 × 21 search window, patch size of 5 × 5 and
threshold coefficient = 20. (f) Proposed method 11× 11 window 5 iteration.

To evaluate the edge preservation ability of the proposed method we im-
plemented the edge preservation index (EP ) as detailed in Foucher and
Lopez-Martinez (2014). We first defined the gradient preservation index
(GP ), derived by taking the average ratio between the observed gradient val-
ues on the filtered Span image I to the gradient on the reference Span image Ĩ.

55



4. Scattering Property Based Contextual PolSAR Speckle Filter

(a) (b)

(c) (d)

Figure 4.7: Speckle filtering of a subset of 300×235 pixels from the AIRSAR
San Francisco bay image. (a) Original 4 look data. (b) Scattering model
based filter with 9 × 9 window. (c) Non-local means with 21 × 21 search
window, patch size of 5× 5 and threshold coefficient = 20. (d) New method
11× 11 window 5 iteration.

Method α H A ENL EP
IDAN 3.374 0.073 0.075 12.621 0.92
Lee 3.838 0.095 0.126 3.987 0.8463
SMB 2.353 0.095 0.1175 0.296 0.3476
NL 4.223 0.073 0.09 5.895 0.8516
New 2.208 0.0419 0.066 9.836 0.9706

Table 4.5: The absolute error in α, H and A estimates from using different
speckle filtering methods and the ENL and EP calculated from different
speckle filtering methods on simulated eight scattering class PolSAR data.
The error values for α are in degrees.

GP =
1

ν

∑

l=1,..,ν

∑

L(x)=l,|∇Ĩ(x)|>0 |∇I(x)|
∑

L(x)=l,|∇Ĩ(x)|>0 |∇Ĩ(x)|
. (4.9)

Here, ∇ is the Sobel gradient operator, L(x) is the class label for pixel x and
ν is the number of distributed scattering classes. EP is derived by projecting
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Method Computation time, s
IDAN 3.97× 10−5

Refined Lee 4.02× 10−5

SMB 1.99× 10−4

NL 2.72× 10−4

Proposed method (coarse selection, 5 iterations) 2.1× 10−3

Proposed method (fine selection, 5 iterations) 6× 10−3

Proposed method (coarse (2 iterations) and
fine selection (3 iterations) ) 4.4× 10−3

Table 4.6: Speckle filtering methods and their respective computational
efficiency measured per pixel when run using an Intel Core i7 CPU with 8GB
memory run on a 64 bit Linux environment.

the values of GP in the interval [0, 1] using the triangular function given as:

EP =

{

1− |1−GP |, GP < 2.

0, GP ≥ 2.
(4.10)

We took the average for each scattering class to evaluate the overall edge
preserving performance. Low values of EP indicate edge over-filtering or
under filtering, whereas a high EP value indicates a good edge preservation.
We observe that the proposed method performs well in preserving edges in
both simulated data.

To investigate the efficiency of the proposed filter an image profile was created
to compare |SHH + SV V |2 intensity profile with the other state of the art
filtering methods (Figure 4.9). The new filter achieves the best filtering
results as compared with the true |SHH + SV V |2 intensity. The non-local
means and the proposed method adequately remove speckle while main-
taining deterministic point scatterers, whereas the poor edge preservation
performance of SMB is clearly indicated in Figure 4.9a.

4.6.2 Airborne AIRSAR data

Figures 4.6 and 4.8 show that the IDAN filter performs well in preserving
edges but it did not fully remove the speckle noise found around volume
scatterers. SMB was not successful in preserving point scatterers and edges.
Furthermore, it introduced artifacts throughout the image (Figure 4.8c). The
refined Lee filter preserved strong point scatterers but smoothened out other
point scatterers. The non-local means had a variety of results when used in
conjunction with the refined Lee and Lee sigma filter (Lee et al., 2009). It
preserved point scatterers but a general over-filtering is observed when used
with refined Lee filter. It achieved its best result when used with the Lee
sigma filter with a 21× 21 search window, 3× 3 target search window, patch
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4. Scattering Property Based Contextual PolSAR Speckle Filter

size of 5× 5, a 9× 9 general filter window and a threshold coefficient equal to
20. The proposed method, was successful in preserving point scatterers and
edges while reducing speckle noise using an 11× 11 window and 5 iterations.

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Speckle filtering results of false color composite in Pauli basis
based on AIRSAR airborne L band data acquired over Flevoland, Netherlands.
(a) Original 4 look SAR data. (b) 80 window row IDAN filter. (c) Refined lee
filter with 9× 9 window. (d) Scattering model based filter with 9× 9 window.
(e) Non-local means with 21 × 21 search window, patch size of 5 × 5 and
threshold coefficient = 20 (f) Proposed method 11× 11 window 5 iteration.

For AIRSAR data two separate experiments were conducted in a completely
rural scene over Flevoland, and a mixture of urban and natural over San
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Francisco bay region. The refined Lee and scattering model based filters
blurred the edges between different agricultural land parcels and roads (Fig-
ure 4.8). The non-local means filter and the new method both preserved
edges while reducing speckle. The non-local means and the new method
performed well in reducing speckle while preserving the boundaries between
different agricultural land parcels while slight over-filtering was observed on
built-up found in the farm lands. In this regard, the new method performed
well in preserving the isolated built up features in the image. In the San
Francisco bay scene (Figure 4.7), the scattering model based filter produced
better preservation of points and edges. However, subtle image features were
still over filtered. The non-local means filter performed well in preserving
edges but it also over filtered built up features that are mixed with vegetation
whereas the proposed filter preserved these mixed features.
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Figure 4.9: Intensity profile from simulated data for | SHH + SV V |2 for
the different speckle filters as compared with the original unfiltered data and
the ground truth image. (a) Scattering model based filter. (b) Non-local
means filter (c) proposed method (d) Location where the profile was taken.

The proposed method compared favorably with other state of the art speckle
filters in preserving point scatterers and edges, even though a block effect is
observed around edges because the filter was initialized using a 3× 3 boxcar
average. The non-local means filter (NL) also performed well in preserving
points but it showed some deficiency in maintaining edges near feature bound-

59



4. Scattering Property Based Contextual PolSAR Speckle Filter

aries. The refined Lee filter failed to preserve many point scatterers and
resulted in over-filtering in all regions. The scattering model based filter
(SMB) blurred all point scatterers and edges and the IDAN filter preserved
the points but failed to filter out the speckle noise from homogeneous regions
(Figure 4.6 and 4.8).

Legend

Ground truth flevoland
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Potatoes

Rapeseed
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Water
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Supervised Wishart classification of AIRSAR airborne L band
data acquired over Flevoland, Netherlands. (a) Ground truth data adopted
from (Lee et al., 2001) (b) IDAN filter (c) Refined Lee filter (d) SMB (e) NL
(f) Proposed method.

4.6.3 Effect of speckle filtering for thematic applications

To evaluate the performance of the proposed speckle filter we applied them-
atic classification to speckle filtered PolSAR data from different speckle filters
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and compared the classified output with ground truth data adopted from
Lee et al. (2001). Before applying classification we split the ground truth
data into training area and a test area. A supervised Maximum Likelihood
Wishart distance classifier (Lee et al., 1994a) was implemented on the IDAN,
refined Lee, SMB, NL and the proposed method were applied.

Method observed accuracy kappa coefficient
IDAN 0.9161 0.9084
Refined Lee 0.9181 0.9105
SMB 0.9132 0.9051
NL 0.9045 0.8954
Proposed Method 0.9074 0.8987

Table 4.7: The classification accuracy for the speckle filtered PolSAR data
using different methods.

It can be observed from Table 4.7 that the classification accuracy of the
proposed method is slightly lower than that of IDAN, refined Lee and SMB.
This is due to the generalized feature type indicated by the ground truth
(Figure 4.10), which differs slightly from the signal variation from the PolSAR
data. NL and the proposed method were both designed to preserve spatial
details in the PolSAR image. This results in deviation from the generalized
ground truth image. To improve the classification accuracy for the proposed
method it is recommended to use a larger than 11× 11 window.

To analyze the effect of speckle filtering on urban scatterers we analyzed
the canonical scattering mechanisms from the AIRSAR San Francisco scene.
We selected a 100× 100 patch from the image scene that was built up. We
applied Cloude-Pottier eigenvalue and eigenvector decomposition and the
unsupervised Wishart classification to derive the scattering mechanisms from
speckle filtered PolSAR data. A ratio analysis of the scattering contribu-
tion from the three canonical scattering mechanisms after applying different
speckle filters was derived.

Method Single Bounce Double bounce Volume
Refined Lee 0.5% 9.91% 89.58%
SMB 1.7% 11.36% 86.93%
NL 0.009% 9.27% 90.71%
Proposed method 1.54% 12.16% 86.28%
4 look original data 2.46% 18.34% 79.19%

Table 4.8: Scattering mechanism contribution after application of different
speckle filtering methods.

It can be observed from Table 4.8 that the proposed method preserves the
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double bounce component better than the other speckle filtering methods.
Different thematic application require different levels of filtering. As indic-
ated in Table 4.7 thematic applications involving agriculture and forestry
require more filtering hence preservation of subtle variations may not be
important. With the exception of precision agriculture. On the contrary,
urban applications such as characterization of urban scattering often requires
preservation of resolution. Hence the optimal speckle filter should perform
well in both applications. In this regard, the proposed speckle filter achieved
good result. A future study should further analyze the effect of speckle
filtering on different thematic applications.

4.7 Discussion

The proposed method works well with L band PolSAR data. It should be
further evaluated for application with short wavelength SAR data in particu-
lar for X band high resolution airborne PolSAR data. For instance, the rule
deriving the assignment of scattering classes for filtering should be adjusted
when using short wavelength high resolution sensors because pixels defined
as surface scatterers in L band will be volume scatterers in X band.

We selected the Cloude-Pottier eigenvalue-eigenvector decomposition to re-
place the Freeman-Durden model based decomposition to minimize the
a-priori information requirement in the image scene and minimize the bias
from the decomposition method. The Cloude-Pottier eigenvalue-eigenvector
decomposition is also roll invariant. Hence, an extra processing step of orient-
ation angle compensation is not required. To minimize the pixel selection bias
we applied the fine pixel selection in volume scatterers in which all pixels with
different scattering properties are not filtered with each other. In addition,
MMSE is applied to all pixels in each scattering category which resulted
in better preservation of edges in volume scatterers. To mitigate the bias
introduced by using a small number of samples in estimating the scattering
mechanisms and classification we adopted an iterative decomposition and
classification approach. Initializing with a fuzzy H/α classification helped to
achieve higher accuracy than crisp Wishart H/α classification. Since speckle
level is minimized we applied the crisp Wishart distance classification on
subsequent iterations thus maintaining a high classification accuracy while
improving computational efficiency. The combination of these three steps
resulted in an overall improvement of the speckle reduction results (Figure
4.4-4.8).

The initial fuzzy H/α classification to designate the different scattering mech-
anisms resulted into improved classification which is critical for a successful
application of this method. Fuzzification of the H/α plane led to improved
identification and consequent classification of scattering mechanisms. In
addition, coarse pixel selection was effective in filtering scenes with a mixture
of urban and rural features as in the San Francisco scene. For dominantly
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rural scenes as in the simulated data and the Flevoland scene, best res-
ults were obtained for a mixture of coarse and fine pixel selection. Initial
classification of scattering mechanisms was also attempted using the crisp
unsupervised Wishart distance classifier (Lee et al., 1999a) and compared
with the fuzzy H/α classification. Both classifiers correctly classified surface
scatterers (Bragg and random surface scattering) but the unsupervised Wis-
hart classifier underestimated the dihedral scattering component identified
on the H/α plane.

The efficiency of the speckle filters for different thematic applications is
different depending on the design parameters of the filter. If the filter is
designed to preserve edges it tends to over filter the homogeneous regions in
the image thereby more suited for agricultural application. The proposed
method was designed to have enough trade off in between smoothing features,
preserving edges and point features. Hence, it under performs as compared
with IDAN, refined Lee and SMB in thematic applications where spatial
variation is un-important as in small scale agricultural applications. This can
be mitigated by using a larger than 11× 11 filter window. In urban thematic
applications the proposed method compares favorably with other speckle
filters because the filter is designed to preserve polarimetric information,
spatial details and point scatterers.

The proposed method has a limitation of achieving good result at the price of
computational time (Table 4.6). This can be prohibitive when processing a
large image scene consisting of millions of pixels. This is the main drawback
observed from employing the new filtering approach. To reduce the com-
putational time the fuzzy H/α classification can be replaced with the crisp
unsupervised Wishart classification at the risk of less accurate scattering type
classification output. The proposed technique can be easily extended to filter
dual polarization data obtained from sensors such as Sentinel-1. It can also
be extended to filter PolInSAR data for coherence estimation. In the current
study the scope was limited to qualitative and quantitative evaluation of
speckle filtering performance. In future work comparisons should be made
with ground truth data to verify the efficacy of the proposed speckle filtering
method.

4.8 Conclusions

The proposed method expands the scattering model based polarimetric
speckle filter (Lee et al., 2006). The study shows that the proposed method
compares favorably to other methods such as the refined Lee filter, the
scattering model based filter and the non-local means filter. We conclude
that it performs robustly in a variety of image scenes. However, for small scale
agricultural applications it does not perform well. We further conclude that
the strength of the proposed method lies in accurately classifying scattering
mechanisms that are obtained by iteratively refining the H/α and coherence
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matrix estimates. Its performance compares favorably with the edge aligned
filtering of the refined lee or the patch based Wishart similarity test method
implemented in the non-local means filter. The main observed limitation is
that it is computationally expensive.
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5Polarimetric scattering property
based distributed scatterer
processing method for PSI
applications

Chapter summary

This chapter extends the method that resulted in the spatial adaptive filter
based on the dominant scattering mechanism. It is tuned to a multi-temporal
PolInSAR data stack. The extended method is based on distinguishing
permanent scatterer (PS) and distributed scatterers (DS) candidates. This is
based on phase entropy. It selects coherent scattering mechanisms within a
DS candidate and discards any incoherent scattering mechanism. The method
increases the number of pixels available for deformation measurement. The
reliability of the new method is tested on both dual polarized and fully
polarized SAR data and compared to other state of the art multi-temporal
InSAR methods.

This chapter is based on: Mullissa, A. G., Perissin, D., Tolpekin, V., Stein,
A., Polarimetric scattering property based distributed scatterer processing
method for PSI applications. IEEE Transactions in Geoscience and Remote

Sensing (Minor revision)
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Abstract

Permanent scatterer interferometry (PSI) is a multi-temporal interferomet-
ric synthetic aperture radar (InSAR) technique that derives high accuracy
ground deformation measurement. A high density of persistent scatterers
(PS) is desired to improve the accuracy of phase unwrapping in deformation
measurement. In natural environments with low PS density, distributed
scatterers (DS) could serve as additional radar targets. To improve the signal
to noise ratio of DS and preserve PS used in PSI analysis, spatially adapt-
ive filtering is required. This chapter introduces a polarimetric scattering
mechanism based adaptive filtering method that preserves PS candidates
and filters DS candidates. To further improve the coherence estimate of DS
candidates the technique includes a complex coherence decomposition that
allowed us to adaptively select the coherent scattering mechanisms, thus
improving pixel coherence estimate. The proposed method was evaluated on
11 quad polarized ALOS PALSAR images and 21 dual polarized Sentinel-1
images acquired over San Fernando valley, California and Groningen, The
Netherlands, respectively. The application of this method increased the
number of coherent pixels by almost a factor of 8 as compared with a single
polarization channel. The study concludes that coherence estimate can be
significantly improved by applying scattering property based adaptive fil-
tering and coherence matrix decomposition and that accurate displacement
measurements can be achieved.

Keywords : Adaptive filtering, Polarimetric Optimization, Multi-temporal
InSAR, Polarimetric SAR Interferometry (PolInSAR), Distributed scatterers.
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5.1 Introduction

Multi-temporal InSAR is a well studied Earth observation technique that
provides a mm scale accuracy in ground deformation measurements (Ferretti
et al., 2001), (Hooper, 2008), (Berardino et al., 2002), (Crosetto et al., 2008),
and (Perissin and Wang, 2012). It aims to identify stable radar targets which
are strong deterministic scatterers and exploits their coherent nature to meas-
ure ground displacement. To derive accurate model fitting for displacement
measurement a dense network of permanent scatterer (PS) candidates is
required increase the accuracy of phase unwrapping. Hence, multi-temporal
InSAR works well in urban areas where the scattering from buildings and
other man made structures guarantee a dense network. However, it has
achieved limited success in obtaining dense PS candidates in natural environ-
ments.

To overcome this limitation, extended radar targets termed distributed scat-
terers (DS) were exploited to obtain dense pixel candidates. These targets
provide moderate coherence as they are affected by temporal and baseline
decorrelation. Hence, by applying adaptive spatial filtering techniques the
signal to noise ratio (SNR) for these targets may be improved. In previ-
ous works different statistical methods were used to distinguish PS and
DS candidates. Goel and Adam (2014) applied the Anderson-Darling test
statistic and Ferretti et al. (2011) used the Kolmogorov-Smirnov test to
evaluate the similarity of the amplitude distribution in two image pixels. Lin
and Perissin (2017) applied a robust t-test to improve the effectiveness of
identifying statistical homogeneous pixels (SHP). With the availability of
fully polarimetric data, Navarro-Sanchez and Lopez-Sanchez (2014) applied
a likelihood ratio test to establish the similarity of two Wishart matrices in
two pixels. To compute the interferometric coherence, pixels are categorized
into SHP on which spatial averaging is performed. Perissin and Wang (2012)
selected DS candidates by appling weights to interferograms to identify DS
that are coherent in portions of the interferogram stack. This method relaxed
restrictions imposed by the PSI technique proposed by Ferretti et al. (2001).

When using medium resolution SAR data, both in mixed rural-urban areas
and rural areas, different DS scattering mechanisms are mixed. An example is
a mixed pixel containing buildings, car and trees. Even though the SNR qual-
ity is improved by multilooking, the interference between the mixed scattering
mechanisms decreases the overall coherence estimate in the resolution cell.
This has important implications in deformation measurements when some of
these scattering mechanisms are coherent and some are not. Fornaro et al.
(2015) introduced the Component extrAction and sElection SAR (CAESAR)
method that is based on using a principal component analysis to decompose
the interferometric covariance matrix to mitigate the effects of layover in
urban areas. This method was able to reduce the effects of decorrelation in
the DS pixels. Recently, Cao et al. (2016) applied eigen decomposition on
the interferometric coherence matrix to obtain the dominant scattering mech-
anism within the DS pixel. This method is effective in reducing decorrelation
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by selecting the dominant scattering mechanism to derive the interferometric
phases. It assumes however that all secondary scattering mechanisms may
constitute noise.

In this chapter, a polarimetric scattering mechanism based adaptive spatial
filtering is introduced to improve SNR of DS candidates. The interferometric
coherence matrix decomposition method (Cao et al., 2016) is modified to
adaptively select secondary scattering mechanisms that interfere construct-
ively with the dominant scattering mechanism and later applied in Quasi
permanent scatterer (QPS) interferometry (Perissin and Wang, 2012). The
objective of this chapter is to adaptively filter DS candidates and select the
most stable scattering mechanisms in the DS cell to improve the overall pixel
coherence in a mixed urban-rural scene.

This chapter is organized as follows. The methodology employed in this study
is described in Section 5.2. The datasets used in this study in Section 5.3.
Results obtained from the methods are shown in Section 5.4. Discussions
and conclusions on the obtained results are presented in Section 5.5.

5.2 Method

5.2.1 SAR polarimetry

Fully polarimetric SAR sensors measure the scattering matrix S which can
be presented as:

S =

[

SHH SHV
SV H SV V

]

, (5.1)

where the complex scattering coefficient SXY indexed as X,Y = (H,V )
represents the horizontal (H) and vertical (V ) polarization states. In SAR
polarimetry, this scattering matrix is represented by the target scattering
vector k̃. Vectorization expands the scattering matrix using simpler canonical
scattering mechanisms. The Pauli target scattering vector of a given scattering
matrix in the monostatic case assuming reciprocity i.e SHV = SV H , is given
as (Lee and Pottier, 2009)

k̃ =
1√
2

[

SHH + SV V SHH − SV V 2SV H
]T
, (5.2)

where T designates a matrix transpose. In dual polarimetric data as in
Sentinel-1 configuration (VH VV), k̃ reduces to:

k̃ =
[

SV V 2SV H
]T
. (5.3)

For deterministic point scatterers k̃ describes the scattering process completely.
For distributed scatterers, however, k̃ displays a random property depending
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on the condition that the SAR wavelength is smaller than the resolution cell.
Hence, k̃ is modeled by a multivariate complex circular Gaussian probability
density function (Lee et al., 1994b). The second order statistics represented
by the coherency matrix T that completely define the randomness of k̃ are
computed by assuming stationarity and ergodicity, given as:

T = 〈k̃k̃†〉 = 1

n

n
∑

i=1

k̃k̃†. (5.4)

Here 〈〉 is spatial or temporal average of pixels and n is the number of samples
or looks used to estimate T . In this chapter, stationarity and ergodicity is
assumed in time so n represents the number of images in the stack. Notice
that no spatial averaging is applied since n is obtained from the temporal
dimension. T is modeled by the complex Wishart probability density function
(Goodman, 1963).

5.2.2 Target decomposition

Target decomposition theorems are used to determine the dominant scatter-
ing mechanism present in a PolSAR data. The Cloude-Pottier eigenvalue-
eigenvector decomposition method (Cloude and Pottier, 1997) break down T
into a sum of elementary scattering contributions. T is a Hermitian positive
semi-definite matrix, hence it can be factorized into a matrix of eigenvalues
and eigenvectors. Thus,

T =

3
∑

i=1

σiuiu
†
i , (5.5)

where ui is the eigenvector and σi is the eigenvalue. The eigenvector can be
further expanded by using physical parameters of targets i.e.

ui =
[

cosαi ejδi sinαi cosβi ejψqi sinαi sinβi
]T
. (5.6)

Here α refers to the physical scattering mechanism as described in (Cloude
and Pottier, 1997), β refers to the orientation of the target within the RADAR
line of sight and δ and ψq are the co-polar and cross polar phase angles,
respectively. The average physical scattering mechanism α̃ is obtained as:

α̃ =

3
∑

i=1

Piαi, where Pi =
σi

∑3
i=1 σi

. (5.7)
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Here Pi is the probability obtained from the eigenvalues (σ). To describe the
statistical disorder of the scattering mechanisms, the scattering entropy is
used, given as:

H = −
3
∑

i=1

Pi log3 Pi. (5.8)

In the Cloude-Pottier eigenvalue-eigenvector decomposition α̃ typically as-
sumes a value between 00 and 900 and H a value between 0 and 1. α̃ values
that are close to 00 resemble a surface scattering, whereas α̃ = 450 resembles
a volume scatterer and α̃ = 900 indicates a double bounce scattering mech-
anism. H values close to 0 represent a deterministic scattering mechanism
and an H value close to one represents a random scattering where there is
no dominant scattering mechanism. However, α̃ by itself is not enough to
define the scattering mechanisms hence, the different scattering mechanisms
are described in the H/α̃ plane (Lee et al., 1999a).

5.2.3 Homogeneous pixels selection

To preserve PS candidates in a multitemporal InSAR processing and filter DS
candidates, homogeneous pixel patches should be identified. In this chapter,
similarity between the objective pixel to be filtered and its neighboring pixels
within a neighbourhood window is established based on similar scattering
properties within spatially interconnected pixels.

The Cloude-Pottier eigenvalue-eigenvector decomposition (Cloude and Pot-
tier, 1997) provides the scattering properties i.e average scattering mechan-
ism (α̃) and scattering entropy (H) in each resolution cell. We derive the
neighborhood similarity by classifying the scattering mechanisms. This is
accomplished by implementing the Wishart distance measure (Lee et al.,
1999a) between a pixel’s T estimate (5.4) and the coherency matrix of the
mth scattering mechanism class, Vm. Here Vm = E[T ] for T ∈ ωm and the
distance measure between pixel T and Vm is given as:

d(T, Vm) = ln | Vm | +Tr(V −1
m T ). (5.9)

Here, ωm are the pixels belonging to the mth scattering mechanism class.
The classification is implemented using an iterative combination of the unsu-
pervised target decomposition classifier and the supervised Wishart classifier
(Lee et al., 1999a). The initial scattering mechanism class was derived for
each pixel by taking the zone center in the H/α̃ scatter plot (Cloude and
Pottier, 1997). For dual polarized data the H/α̃ zone is modified as discussed
in (Ji and Wu, 2015). In subsequent classifications the average T from each
scattering class defined in the H/α̃ plane is used to define the new class
coherence matrix Vm and each pixel in the image is classified based on the
new Vm. This process is repeated until a termination criterion is reached.
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In this chapter, the number of pixels switching class when compared with a
previous classification result is used.

The SHP’s are defined within a p× p pixel window. We first discard isolated
pixels that do not belong to a scattering class of the objective pixel to be
filtered that is not spatially connected directly or through other SHP’s. The
spatially adaptive filtering is defined for pixel W and all SHP’s connected
to pixel W . The brightest pixels that belong to the deterministic single
bounce or double bounce class are left out as these may be PS candidates.
This is accomplished by using the concept utilized in the Lee sigma filter
(Lee et al., 2009). We first determine the 98th percentile of the double
bounce class obtained from the temporal average of T22 intensity image
( 1n
∑n
i=1 |SHHi

−SV V i
|2) and single bounce class obtained from the temporal

average of T11 intensity image ( 1n
∑n
i=1 |SHHi

+SV V i
|2). The 98th percentile

and a threshold of 5 pixels within a window of 3× 3 are used to investigate if
the target is a strong scatterer. Once the PS and DS patches are identified,
adaptive spatial filtering of the objective pixel is performed within a p× p
pixel window on the DS candidates only. The term spatial adaptive filtering
mentioned throughout the manuscript refers to the selective averaging of
pixels based on the identified SHP’s. It includes generation of SHP’s by using
scattering properties and space adaptive averaging of DS pixels.

5.2.4 Polarimetric Optimization

Polarimetric optimization is a method to increase the interferometric phase
quality and number of PS and DS involved in PSI by selecting the polarization
state that is least affected by decorrelation (Mullissa et al., 2017b) (Iglesias
et al., 2014) (Navarro-Sanchez et al., 2014). To this effect, we first define the
polarimetric interferometric coherency matrix Z, containing both polarimetric
and interferometric information. Z is given as:

Z = 〈KK†〉 =
[

Tii Ωij
Ω†
ij Tjj

]

,with K =
[

k̃Ti k̃Tj
]T
. (5.10)

where Tii and Tjj are the coherency matrices related to images i and j and
Ωij(i 6= j) is the polarimetric interferometric correlation matrix, respectively.

The interferometric coherence γij is formulated by projecting the scattering

vectors k̃i and k̃j onto the complex unitary vector ω,

γij =| γij | eiφ =
ω†Ωijω

√

(ω†Tiiω)(ω†Tjjω)
. (5.11)

Coherence optimization aims at finding the ω values that maximize the
average coherence amplitude. The complex unitary projection vector ω can
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be represented with parameters that resemble the physical attributes of radar
targets as shown in (5.6). Hence, it is parameterized as:

ω =





cosα
eiδ sinα cosβ
eiψq sinα sinβ



 (5.12)

with 0 ≤ α ≤ π/2 , 0 ≤ β ≤ π, −π ≤ δ ≤ π and − π ≤ ψq ≤ π.

For dual polarized data ω reduces to:

ω =

[

cosα
eiδ sinα

]

. (5.13)

The optimal scattering mechanism ω is obtained by numerical optimization of
the four parameters described in (5.12) or the two parameters in (5.13) that
provide the highest coherence amplitude in (5.11). Numerical optimization
routines like the conjugate gradient descent method (Fletcher and Reeves,
1964) can be used to obtain the optimal parameter values.

5.2.5 DS selection and processing

In the traditional PSI analysis PS candidates are targeted for further analysis
in the multi-temporal InSAR processing framework. These pixels correspond
to a strong point scatterer by which all other secondary scatterers present
within the resolution cell are dominated (Figure 5.1a). In contrast, DS
candidates are characterized by a scattering mechanisms where none of the
mechanisms dominate (Figure 5.1b and 5.1c). In practice, there can either
be one type of scattering mechanisms in the resolution cell where none of
the mechanisms dominates (Figure 5.1b) or it can be a mixture of different
scattering mechanisms where some mechanisms are slightly dominant on the
others (Figure 5.1c). If there is a mixture of scattering mechanisms within the
resolution cell, phase decomposition (Cao et al., 2016) (Fornaro et al., 2015)
can be applied to select the polarization state with the coherent scattering
mechanism for application into the different multi-temporal InSAR analysis
methods (Ferretti et al., 2011) (Hooper, 2008) (Perissin and Wang, 2012).

To characterize the differential phase vectors of DS pixels we first need to
derive the interferometric coherence matrix Γ (Ferretti et al., 2011). To
this effect, we first extend the polarimetric optimization routine described
in section 5.2.4 from a single baseline to a multi-baseline case to determine
the optimal polarization state ω. The polarimetric interferometric coherency
matrix Z discussed in (5.10) is expanded to the multi-baseline case as:

Z =
1

NW

∑

K∈η
KK† =







Tii · · · Ωin
...

. . .
...

Ω†
in · · · Tnn






, where K =

[

k̃i
T · · · k̃n

T
]T

.
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Figure 5.1: Pixel classes utilized in multi-temporal InSAR analysis (a) PS
candidate (b) DS candidate with incoherent scattering mechanisms (c) DS
candidate with coherent scattering mechanism.

(5.14)

Here η represents a patch of homogeneous pixels defined in Section IIC
containing NW pixels and i ∈ [1, 2, ..., n]. In the multi-baseline case, the
optimal polarization state ω is obtained by numerical optimization of the
parameters described in (5.12) and (5.13) that provides the highest average

coherence of the n(n−1)
2 set of interferograms. Therefore Γ is constructed as:

Γ = 〈ss†〉 = 1

NW

∑

s∈η
ss† =











1 γ12 · · · γ1n
γ∗12 1 · · · γ2n
...

...
. . .

...
γ∗1n γ∗2n · · · 1











(5.15)

where s =
[

si · · · sn
]T

is the normalized polarimetric scattering coeffi-

cient of a stack of n images which is derived as si =
Ii√
IiI∗i

with Ii = ω†k̃i. Γ

is distinctly different from T and Z because it contains only interferomet-
ric information. Γ is a Hermitian positive semi-definite matrix where each
element corresponds to the complex interferometric coherence γij , with the
modulus representing the coherence amplitude and the argument representing
the interferometric phase. The flat earth and topographic phase contribution
are removed from the off diagonal components of Γ prior to adaptive spatial
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filtering.

An eigenvalue decomposition routine is applied to decompose Γ into its
respective eigenvalues and eigenvectors using a singular value decomposition.
It is given as:

Γ = QΛQ∗ =

n
∑

i=1

λiqiq
†
i . (5.16)

Here Q = [q1 · · · qn] is the matrix of orthogonal eigenvectors arranged in
columns and Λ is the diagonal matrix containing non-zero eigenvalues λ
arranged in decreasing order. The eigenvectors represent the scattering mech-
anisms and the eigenvalues represent the statistical weight assigned to each
scattering mechanism.

Hence, to describe the statistical disorder of each scatterer type the scattering
entropy H described in Section 5.2.2 is used. We modify the equation for H
to derive the statistical disorder of the phases (Ψ) in a resolution cell as:

Ψ = −
n
∑

k=1

Pklogn(Pk) with Pi =
λi

∑n
k=1 λk

and

n
∑

k=1

Pk = 1. (5.17)

For low Ψ values the resolution cell is dominated by a deterministic point
scatterer that dominates other scatterers. Therefore, the second and higher
eigenvalues within the resolution cell may be neglected as noise sources. For
strong point scatterers, such as PS candidates the SVD decomposition results
in one non-zero eigenvalue representing the strong scatterer, indicating a
single dominant scattering mechanism (Lee and Pottier, 2009). In this case,

(5.16) reduces to Γ = λ1q1q
†
1. Hence, for PS candidates the coherence matrix

obtained from the dominant scattering mechanism Γ(q1) and the original
coherence matrix are nearly identical i.e. Γ ≈ Γ(q1). In practice, for entropy
values closer to zero, the scattering media can be considered as determin-
istic and the dominant scattering matrix component can be extracted as
the eigenvector corresponding to the largest eigenvalue (Cloude and Pot-
tier, 1995) (Cloude, 1990). In this case, interference of secondary scatterers
with the dominant scattering mechanism is insignificant and can be ignored.
Hence, the optimal average coherence values can be achieved by discarding
all secondary scattering mechanisms and the optimal coherence matrix Γ(q∗)
becomes Γ(q∗) = Γ(q1) (Cao et al., 2016).

For DS candidates with higher Ψ two cases are distinguished. The first case
is that Ψ is close to 1. This indicates that there are n mutually orthogonal
scattering mechanisms with similar amplitude. In this case the scattering can
be characterized as a random noise process. Hence, it is considered a random
DS and will yield a low coherence and the pixel is useless for multi-temporal
InSAR analysis. The second case is that Ψ achieves a moderate value. This
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indicates that there are n dominant scattering mechanisms with decreasing
dominance weights. Analysis of secondary scattering mechanisms and their
differential phase interference pattern, however revealed that differential
phases of some scattering mechanisms are in-phase. These scattering mech-
anisms are in-phase when they follow the same differential phase pattern
indicating the same deformation pattern. Therefore, the coherence matrix
adds up to a higher pixel coherence amplitude. Hence, by adaptively selecting
only the scattering mechanisms with differential phases that are in-phase
with the primary scattering mechanism we can maximize the amplitude of
the coherence sum. Even for very low entropy values however some of the
secondary scattering mechanisms may interfere constructively thus providing
an incremental improvement to the coherence. However, the coherence from
the strong scatterer is already high (Figure 5.2a, 5.2c, 5.3a and 5.3c), higher
than the quality threshold imposed on multi-temporal InSAR processing.
For computational efficiency it is suggested to select a threshold for entropy
values where the secondary scattering mechanisms are significant enough to
increase the coherence above the threshold values. The selection of these
threshold values should be evaluated on a case to case basis. The adaptive
selection of secondary scattering mechanisms that interfere constructively is
achieved by first defining an arbitrary interferometric coherence matrix, Γc
constructed from of the subset of eigenvectors as:

Γc =
∑

i∈c
λiqiq

†
i where c ⊂ {1, 2, ..., n} . (5.18)

Here c is the subset of the eigenvectors. Since, the coherence matrices are
Hermitian positive semi-definite matrices of which the strictly upper triangular
elements represent unique values for the interferometric phase. Hence, we use

only the n(n−1)
2 strictly upper triangular elements of the coherence matrix

denoted by [.] in the optimization routine. The optimization criterion for
selecting the constructively interfering scattering mechanisms is the amplitude
of the sum of complex coherence values given as:

ǫ = |
n
∑

b=2

b−1
∑

a=1

[γab]|. (5.19)

Here a and b are the row and column number of the elements in Γc and ǫ is
the amplitude of the sum of the upper triangular coherence values in Γc. The
optimal set of eigenvectors copt selected by discarding the unstable scattering
mechanisms is given by:

copt = arg max
c

{ǫ}. (5.20)
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Figure 5.2: Absolute value of the polarimetric interferometric coherence
matrix extracted from ALOS PALSAR data (a) PS candidate for Γ (b) DS
candidate for Γ (c) PS candidate derived from adaptive selection of construct-
ively interfering scattering mechanisms Γ(q∗) (d) DS candidate derived from
adaptive selection of constructively interfering scattering mechanisms Γ(q∗).
For the PS candidate the coherence amplitude is high in all interferograms
in both Γ and Γ(q∗). For the DS candidates (b) and (d) it can clearly be
seen that coherence improves in almost all interferograms except in images
six and seven where the effect of baseline decorrelation occurs.
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Figure 5.3: Absolute value of the polarimetric interferometric coherence
matrix extracted from Sentinel-1 data (a) PS candidate for Γ (b) DS candidate
for Γ (c) PS candidate derived from adaptive selection of constructively inter-
fering scattering mechanisms Γ(q∗) (d) DS candidate derived from adaptive
selection of constructively interfering scattering mechanisms Γ(q∗).

and the optimal coherence matrix Γ(q∗) calculated from the selected optimal
subset of eigenvectors is given as:

Γ(q∗) =
∑

i∈copt
λiqiq

†
i . (5.21)

As is evident from (5.20) the amplitude of the coherence sum is maximized
by using an exhaustive search optimization. This can be computationally
expensive if a large stack of images is being processed.

The proposed method work flow is summarized as:

1. Apply the scattering property based adaptive spatial filter to identify
and filter DS.

2. Optionally: implement coherence optimization to derive the optimal
polarization state ω.
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Figure 5.4: Location map of the two test areas. (a) Intensity image
obtained by incoherent temporal average of 11 ALOS PALSAR images of San
Fernando valley, California. Blue stands for |SHH + SV V |2, green stands for
|SHH − SV V |2 and red stands for |2SV H |2. (b) Intensity image obtained by
incoherent temporal average of 21 Sentinel-1 images of the Groningen area,
The Netherlands. Blue stands for |SV V + SV H |2, green stands for |SV H |2
and red stands for |SV V |2.

3. Derive the scattering entropy Ψ by applying target decomposition to
polarimetric interferometric coherence matrix Γ and select the target
DS by applying a threshold to Ψ.

4. Adaptively select constructively interfering scattering mechanism of
the selected DS by maximizing the amplitude of the complex coherence
sum in the polarimetric interferometric coherence matrix Γ.

5. Integrate the optimal coherence matrix Γ(q∗) into the Quasi-Permanent
scatterer (QPS) interferometry multi-temporal InSAR analysis.

The QPS technique differs from the PSI technique in three aspects. Interfero-
grams are filtered and are not required to be formed from a single common
master image and the target height and displacement are estimated by se-
lecting a subset of interferograms. In this way, it inserts the coherence value
as a weight to make sure that only coherent interferograms in Γ influence
the result of estimation. Hence, no phase triangualtion is required to return
to n− 1 interferograms as in the SqueeSAR (Ferretti et al., 2011). The QPS
method is detailed by Perissin and Wang (2012).

5.3 Datasets

To evaluate the performance of the proposed method 11 quad polarized ALOS
PALSAR images acquired from June 8, 2006 to March 16, 2009 over the
San Fernando valley, California (Table 5.2) and 21 dual polarized Sentinel-1
images acquired from August 14, 2015 to April 05, 2017 over the Gronin-
gen area in the Netherlands (Table 5.2) were used. The ALOS PALSAR
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sensor acquires data in L band for the quad polarization images whereas
the Sentinel-1 sensor acquires data in C band for both dual and single po-
larimetric images (Table 5.1). The test areas contain 930× 5715 pixels and
cover 10.76 km× 20.23 km for the ALOS PALSAR and 1855× 955 pixels and
13.3 km × 6.8 km for the Sentinel-1 data in range and azimuth directions,
respectively. The ALOS PALSAR image consists of predominantly urban
region (Figure 5.4a) and the Sentinel-1 image consists of a predominantly
natural environment that consists of agricultural area (Figure 5.4b). The
polarimetric content of the two scenes can be observed from the false color
composites of the two regions (Figure 5.4).

Quad polarized data Dual polarized data

Sensor ALOS-PALSAR Sentinel-1A and 1B
Resolution 11.38m× 3.54m 3.67m× 13.94m
Incidence angle 23.60 39.350

Orbit Ascending Ascending
Temporal baseline 46 days 6 days
Dates 2006/06/08 - 2009/03/16 2015/08/14 - 2017/04/05
Number of images 11 21

Table 5.1: Acquisition parameters for the ALOS PALSAR quad polarized
images and Sentinel-1 dual polarized images.

5.4 Results

Pixel similarity within a pixel neighborhood is established by implementing
the Wishart distance classification method (Lee et al., 1999a). The average
coherency matrix is first constructed by averaging the single look coherency
matrices in the temporal dimension. The scattering property for the scene
i.e. average scattering mechanism (α̃) and the scattering entropy (H) are
derived by implementing the Cloude-Pottier eigenvalue-eigenvector decom-
position method (Cloude and Pottier, 1997). The α̃ derived in section IIB
by implementing the Cloude-Pottier eigenvalue-eigenvector decomposition
assumes different values from the optimal scattering mechanism α defined
in this section. The reason is that α̃ describes the dominant scattering
mechanism present within the resolution cell whereas α defines the scattering
mechanism that maximizes the interferometric coherence in a polarimetric
SAR data stack. Hence, α̃ and α have similar values in resolution cells where
there is a deterministic point scatterer. In DS scatterers α̃ and α assume
different values. To implement the Wishart distance classification routine
for the classification of scattering properties, α̃ and H values were plotted
on the H/α plane and the center points in each class selected to initialize
the classification process. We implemented combination of the unsupervised
target decomposition classifier and the supervised Wishart classifier routine
described in section IID which resulted in eight distinct scattering mechanism
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Sentinel-1 ALOS PALSAR

Number Date PB TB Date PB TB

1 2015/08/14 -61.91 -336 2006/06/08 1,121.70 -322
2 2015/08/26 -3.01 -324 2006/09/08 -730.50 -230
3 2015/09/07 79.57 -312 2007/03/11 -1,077.72 -46
4 2015/10/13 -69.05 -276 2007/04/26 0 0
5 2016/07/15 0 0 2007/07/27 -1,322.48 92
6 2016/07/27 41.05 12 2007/10/27 -2,241.96 182
7 2016/08/08 24.54 24 2008/01/27 -2,730.32 276
8 2016/10/07 21.50 84 2008/09/13 1,629.91 506
9 2016/10/19 -44.09 96 2008/10/29 1,351.22 552
10 2016/10/31 -92.42 108 2009/01/29 655.61 644
11 2016/11/12 -62.28 120 2009/03/16 67.30 690
12 2016/11/24 -12.54 132
13 2016/12/06 31.22 144
14 2016/12/18 9.14 156
15 2016/12/30 -70.22 168
16 2017/01/05 8.34 174
17 2017/01/23 -38.31 192
18 2017/02/04 -5.47 204
19 2017/02/16 -11.92 216
20 2017/03/06 -8.72 234
21 2017/04/05 20.32 264

Table 5.2: List of Sentinel-1 and ALOS PALSAR data used in this chapter.
In the table PB refers to perpendicular baseline in meters whereas TB refers
to temporal baseline in days.

classes. A 10% pixel switching threshold is used as termination criteria.
To establish homogeneity within the neighboring of DS pixels, spatial con-
tiguousness of pixels of a similar scattering class is assessed. A minimum
number of eight pixels within a 15× 15 pixels is used to establish this pixel
neighborhood. Pixels that did not fulfill the eight interconnected neighboring
pixels were designated as isolated pixels. Isolated pixels not belonging to the
PS candidates were merged with the class that has the majority surrounding
those pixels. The number of homogeneous pixels generated using a 15× 15
pixel neighborhood from the classified scattering mechanism is shown in
Figures 5.5a and 5.6a. The effectiveness of the scattering property based
adaptive filtering method is demonstrated by filtering a single look Sentinel-1
image (Figure 5.7). The scattering property based adaptive filtering method
clearly reduces speckle while preserving feature shapes and edges.

The proposed method adaptively selected the secondary scattering mechan-
isms that interfere constructively with the dominant scattering mechanisms
hence, improving the overall pixel coherence. This can be observed from
Figures 5.2 and 5.3. The interferograms with short temporal baselines located
near the diagonal line show higher coherence. However, interferograms with
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Figure 5.5: (a) Number of homogeneous pixels identified within 15 × 15
window by the classification of scattering mechanisms for the ALOS PALSAR
data. (b) Scattering entropy for the study area. Low entropy values represent
a deterministic single dominant scattering mechanisms whereas high entropy
values represent multiple random scattering mechanisms within a resolution
cell.
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Figure 5.6: (a) Number of homogenous pixels identified within 15 × 15
window by the classification of scattering mechanisms from Sentinel-1 data.
(b) Scattering entropy for the study area.

long perpendicular baselines (in images 6 and 7 of Figure 5.2b and 5.2d)
display low coherence values. With DS decomposition the coherence values
with short temporal baselines show a significant increase (> 0.1) whereas
the coherence interferograms with long spatial and temporal baselines do
not show much improvement from the polarimetrically optimized coherence
matrix Γω. This is reasonable because with temporal decorrelation, the
scattering property of the media changes and that may be un-related to
interference of different scattering mechanisms.

We selected the DS candidate points for the application of the proposed
method by using the phase entropy Ψ defined in section 5.2.5. For Ψ ≤ 0.4, the
dominant scattering mechanism q1 achieves the highest coherence value indic-
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Figure 5.7: Comparison between (a) unfiltered Sentinel-1 dual polarization
intensity image acquired on 2015/08/14 and (b) Intensity of the same image
obtained by applying the scattering property based adaptive filtering method.
It can clearly be seen that the proposed method reduces speckle effectively.
In the images blue stands for |SV V + SV H |2, green stands for |SV H |2 and
red stands for |SV V |2.
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Figure 5.8: Comparison of entropy distribution for pixels with temporal
coherence greater than 0.9 for the Sentinel-1 data. For Ψ > 0.4 selecting the
constructively interfering secondary scattering mechanisms with the dominant
scattering mechanism Γ(q∗) selects more pixels than by using the dominant
scattering mechanism Γ(q1).

ating all secondary scattering mechanisms constitute noise. For 0.4 < Ψ ≤ 0.9,
the proposed method increased the average pixel coherence by removing the
noisy scattering mechanism (Figure 5.8).

Results from the proposed method were evaluated in terms of the number
of pixels selected as measurement points i.e. the detail of the derived dis-
placement map and the accuracy of the derived displacement map. We used
the dominant scattering mechanism q1 derived from the VV channel Γ(q1)
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selected by implementing the method detailed in (Cao et al., 2016) and
applied the proposed method on the polarimetrically optimized coherence
matrix Γω(q

∗) for comparison. For consistency, adaptive spatial filtering in
the formation of ΓV V , Γ(q1) and Γω(q

∗) used the same SHP patch. On the
ALOS PALSAR data ΓV V selected 8, 091 pixels, Γ(q1) selected 21, 476 pixels
and Γω(q

∗) selected 63, 605 pixels, respectively by using a temporal coherence
threshold γt > 0.9 (Table 5.3). The temporal coherence is the parameter
that shows the variations in phase residuals between the model and observed
phases after estimation and removal of atmospheric phase screen, orbital
and DEM phase errors (Ferretti et al., 2001). To evaluate the improvement
obtained when using polarimetric optimization we compared the number
of pixels selected from polarimetrically optimized coherence matrix Γω and
dominant scattering mechanism derived from decomposition of optimized
coherence matrix Γω(q1). Γω selected 28, 264 pixels and Γω(q1) selected
42, 654 pixels.

ALOS PALSAR Sentinel-1

PSI – 2,234 (0.12%)
ΓV V 8,091 (0.15%) 5,244 (0.29%)
Γ(q1) 21,476 (0.4%) 8,639 (0.48%)
Γω(q

∗) 63,605 (1.19%) 13,578 (0.76%)

Table 5.3: Number of pixels selected from the coherence matrix derived
from VV channel ΓV V , the dominant scattering mechanism Γ(q1) and adapt-
ively selecting the constructively interfering scattering mechanisms from the
polarimetrically optimized coherence matrix Γω(q

∗).

Next, the proposed method was implemented on a dual polarized Sentinel-1
data and the VV channel. The ΓV V selected 5, 244 measurement points,
Γ(q1) selected 8, 639 pixels and Γω(q

∗) selected 13, 578 pixels, respectively, by
using a temporal coherence threshold γt > 0.9. To evaluate the improvement
obtained when using polarimetric optimization we compared the number of
pixels selected from polarimetric optimization, dominant scattering mech-
anism derived from optimized coherence matrix and the proposed method.
The polarimetrically optimized coherence matrix Γω selected 8, 087 pixels,
dominant scattering mechanism Γω(q1) selected 9, 976 pixels. The ALOS
PALSAR scene is located in a predominantly urban region where there is a
mixture of distinct scattering mechanisms as shown in Figure 5.5b. Therefore,
the proposed method was able to improve the pixel average coherence signi-
ficantly (Figure 5.9). The Sentinel-1 image however in contrast is located in
a rural region with more random scattering mechanisms and a high entropy
(Figure 5.6b). Hence the proposed method did not provide much improvement
in coherence.

The overall computational burden of the proposed method is 6.35× 10−3s
per DS candidate pixel. The implementation of the scattering property based
adaptive filtering routine required 23% of the overall computational time
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Figure 5.9: Temporal coherence estimated from the (a) ALOS PALSAR
dataset (b) Sentinel-1 dataset

per pixel, whereas polarimetric coherence optimization utilizing conjugate
gradients required 31% per pixel. However, the phase entropy based DS
identification and the coherence matrix optimization by selection of coherent
scattering mechanism by exhaustive search optimization was computationally
expensive especially if the full set of eigenvectors was considered for optimiz-
ation. It required 3.42 × 10−3s per DS pixel for the ALOS PALSAR data
(11 images) and 8.98s per DS pixel for the Sentinel-1 data (21 images) when
implemented in Matlab running on a Linux operating system with an Intel
core i7 2.70GHz processor laptop with 8 processing cores. It is clear that
DS identification with an exhaustive search optimization of constructively
interfering scattering mechanism is the most expensive. Its computational
efficiency is significantly improved by imposing a threshold on the minimum
eigenvalue for the eigenvector to be considered for optimization. It required
46% of the overall processing time if a threshold of 0.2 is applied on the
eigenvalue when processing the Sentinel-1 data.

The deformation maps derived from the proposed method were compared
with the VV channel and the dominant scattering mechanism derived from
it. We derived the displacement maps shown in Figure 10 and 11 using
SARPROZ multi-temporal InSAR processing software (Perissin et al., 2011).
The deformation trend estimated from each method showed good agreement.
However, the details provided by the proposed method is higher than ΓV V
and Γ(q1). In the ALOS PALSAR scene more details are provided by the
proposed method than by the other methods thereby clearly delineating
the boundaries of the subsidence phenomena (Figure 5.10c). We have not
included the results of PSI for the ALOS PALSAR dataset since a minimum
number of 15-20 images is required for a PSI analysis (Crosetto et al., 2016).

To assess the performance of the displacement estimation from the proposed
method, we compared the temporal coherence from ΓV V , Γ(q1), and Γω(q

∗)
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(a) (b)

(c)

Figure 5.10: The deformation rate in mm yr−1 measured from the adapt-
ively filtered ALOS PALSAR images (a) VV channel ΓV V (b) Dominant
scattering mechanism derived from VV channel Γ(q1) (c) Proposed method
Γω(q

∗). The PSI method is not included because PSI analysis derived from
11 images is unreliable.

coherence matrices. Higher temporal coherence corresponds with a lower
phase residual and a high model fit. It can be seen from Figure 5.9, Γω(q

∗)
selects more pixels with high temporal coherence than ΓV V and Γ(q1). In
this way, we conducted a detailed time series analysis around the village of
Langelo at a location of a gas extraction plant and the town of Roden for
the Sentinel-1 data (Figure 5.11). Figure 5.12a shows that the VV channel,
Γ(q1) and Γω(q

∗) provide similar displacement time series when compared
to a PS candidate. However, the accuracy of displacement measurement
deviated when comparing a PS candidate and a nearby DS candidate (Figure
5.12b). The reason for this can be a combination of effect of filtering of DS
candidates, the full resolution differential phase values that deviate from
each other, and the variation in point density which induces unwrapping
errors. Figure 5.12b is extracted over the Langelo gas extraction site in
Groningen which is undergoing ground subsidence at a rate of 15 mm per
year by the proposed method. A deformation rate of 18 mm per year reported
by previous observation (ESA, 2016) agrees well with the measurement using
the proposed method.
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(a) (b)

(c) (d)

Figure 5.11: The deformation rate in mm yr−1 measured from the adapt-
ively filtered Sentinel-1 images (a) VV channel ΓV V (b) Dominant scattering
mechanism derived from VV channel Γ(q1) (c) Proposed method Γω(q

∗). (d)
PSI

5.5 Discussion and conclusion

In this chapter, the scattering property based speckle filtering suggested by
(Lee et al., 2006) (Mullissa et al., 2017a) for single quad polarized data has
been extended to filter both quad polarized and dual polarized interferometric
coherency matrices. Estimation of the polarimetric coherency matrix by aver-
aging in the temporal dimension helped to preserve the scene resolution. This
was important in an application to multi-temporal InSAR analysis, where
most of the analysis is concentrated on pixel candidates that are coherent
scatterers. The application of adaptive filtering also helped to improve the
the estimate of coherence, as coherence bias depends upon the number of
samples (looks) and the stationarity assumption used in estimation (Touzi
et al., 1999). In this way, maintaining the homogeneity of the neighborhood
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Figure 5.12: Displacement time series obtained from the Sentinel-1 data-
sets by applying different methods on (a) a measurement point from a PS
candidate and (b) measurement point taken from a PS pixel candidate and a
DS pixel candidate .

pixels by applying the scattering property based adaptive filtering and using
a larger averaging window to have a large number of samples minimizes the
bias in coherence estimation.

The modified phase decomposition method described in this manuscript
helped improving the interferometric phase quality by discarding incoherent
scattering mechanisms in the resolution cell. The scattering mechanisms can
be understood as scatterers that have distinct phase centers with different
height and spatial locations. We exploited the interference pattern of the
secondary scattering mechanisms to improve the coherence estimate of the
resolution cell. It was effective in removing secondary scattering mechanisms
that interfered with other dominant scattering mechanisms. Theoretically
all secondary scattering mechanisms can be coherent but only a few of
these scattering mechanisms do so, the rest constitutes noise. Its effect is
more pronounced in DS pixels without a significantly dominant scatterer.
Hence, the proposed method is removing these sources of noise from the pixel.
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6. Synthesis

6.1 Research findings and conclusions

This chapter reviews the main elements of the thesis. It summarizes how the
aims and objectives of the thesis were achieved. At the end, it provides sug-
gestions and recommendations for future direction of this research. Detailed
conclusions for the individual objectives are presented. This chapter sum-
marizes the general conclusions from the thesis and discuss the key findings
of this research in relation to the research objectives.

◮ Objective 1: To evaluate the improvements from polarization
optimization methods in a natural environment.

In this objective, I investigated if the phase quality can be reliably
improved by applying polarimetric optimization and coherence decom-
position to PolSAR data acquired over an arid natural environment.

I applied three coherence optimization techniques and compared the co-
herence improvement for fully and partially polarized ALOS PALSAR
data. For both dual polarized and quad polarized SAR data the
equal scattering mechanism (ESM) proved to be the best performing
coherence optimization method. In addition, we applied coherence
decomposition to understand the effect of polarimetric optimization in
single and double phase center scenarios representing a bare surface
and vegetated regions. In single phase center scenarios polarization
played a direct role in increasing the signal to noise ratio of the backs-
cattered signal. In double phase center scenarios polarization increased
the signal to noise ratio but the phase center location of the optimal
polarization state was arbitrary. In some cases it was at the top of a
canopy whereas in other cases it was located at the ground surface. The
HH-VV polarization channel did not provide the highest interferometric
coherence but it consistently yielded a phase center closer to the ground.

Furthermore, I assessed the coherence and interferometric phase bias
introduced from using all three optimizers as a function of number of
looks. Joint diagonalization based coherence optimizer had the highest
phase bias if the coherence matrix at each end of the baseline deviated
from the polarimetric stationarity assumption. ESM is the optimizer
with the least bias when using a large number of looks. To confirm
the improvement of the interferometric phase quality from the different
polarimetric optimization methods I compared the LOS displacements
obtained from each optimizer with that of terrestrial GPS stations.
ESM provided the highest time series correlation coefficient when com-
pared with the other optimization methods even though DEM, orbital
and atmospheric phase errors were not rectified. The reasons were that
ESM explores the full polarization space and that it handles polari-
metric stationarity by taking the average of coherency matrices in the
multi-spatial and multi-temporal baselines.
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It is concluded that ESM is the best optimization method with the
highest coherence and interferometric phase accuracy when applied in
a single phase center scenario even though it is computationally the
most expensive one. When using the dual polarization configuration
the co-polarization channel (HH VV) achieved higher interferometric
phase accuracy than the cross polarization channel (HH HV) and both
performed better than the traditional HH channel. This was because
the HV signal in the image was from vegetation and contained less
signal to noise ratio than the VV channel. Therefore the polarimetric
optimization methods could not improve the interferometric coherence
estimate.

The following research question has been answered:

◮ Can polarimetric coherence optimization be used to reliably im-

prove the quality of deformation measurement in a natural envir-

onment?”.

Polarimetric optimization methods significantly improve the inter-
ferometric coherence estimation when compared with the single
channel SAR interferometry. The reason for this was polarimet-
ric datasets expand the polarimetric observation space. As dis-
cussed in Chapter 2, a polarization state in the linear basis can be
transformed to any elliptical or circular basis. This expansion of
”observation space” improves the interferometric coherence at the
cost of computational time. The higher interferometric coherences
is associated with higher interferometric phase accuracy therefore
leading to a more accurate estimation of deformation. This was
supported by both the simulated experiments and the in-situ GPS
comparisons.

◮ To exploit polarimetric diversity in PolSAR data to select
statistical homogeneous pixels (SHP’s) that is suitable for es-
timating the coherency matrix.

In this objective, I investigated if the polarimetric scattering mech-
anisms can be used to select statistically homogeneous pixels for the
estimation of the coherency matrix. In addition, I investigated how
to minimize the estimation bias for the scattering mechanisms so that
the derived SHP’s reduces speckle while preserving spatial detail in a
PolSAR intensity image.

I applied the Cloude-Pottier eigenvalue-eigenvector decomposition to
determine the scattering parameters (α, H) to minimize the scattering
mechanism estimation bias. The application of the Cloude-Pottier
decomposition as opposed to model based decomposition such as the
Freeman-Durden target decomposition minimized the bias because
the Cloude-Pottier decomposition does not require orientation angle
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compensation and a-priori information. I applied the Fuzzy H/α Wis-
hart classification to properly model the class mixture around class
boundaries and classify the scattering mechanisms. The application
of the Fuzzy H/α Wishart classification improved the classification
accuracy when compared with the crisp Wishart H/α classification. I
also applied a coarse and fine pixel selection that groups the pixels into
their canonical scattering mechanisms for spatial filtering. The applic-
ation of the coarse and fine pixel selection helped retain the spatial
details in the PolSAR image. I iteratively refined the estimate of the
coherency matrix by gradually increasing the estimation window which
significantly improved the scattering mechanism and coherence matrix
estimate which subsequently improved the spatial filters accuracy. I
evaluated the efficiency of the proposed method by comparing the result
from the proposed method with other state of the art PolSAR speckle
filters both on simulated and real data.

It is concluded that using dominant scattering mechanism within pixels
in addition to the intensity statistics is an effective way to estimate
the coherency matrix in PolSAR data. The strength of the developed
statistically homogeneous pixels selecting method lies in iteratively
improving the estimates of the coherency matrix and scattering mech-
anism classification results.

The following research question has been answered:

◮ How can polarimetric information be used to devise spatially adapt-

ive filter that is suitable for properly estimating coherency matrix?.

The most powerful aspect of polarimetric SAR is its ability to
identify different target scattering mechanisms within a pixel.
This unique capability has been exploited for terrain classifica-
tion. Similarly the target scattering mechanism was used to derive
statistically homogeneous pixels in the estimation of coherency
matrix. The challenge was minimizing the bias in the target
decomposition and classification procedures. I overcame this chal-
lenge by initializing the decomposition and classification from a
small boxcar filter and iteratively increasing the samples used in
the decomposition until a quality threshold is reached. This was
shown to compare favorably with other statistically homogeneous
pixel selection methods that were based on only intensity statistics.

◮ Objective 3: To improve the coherence estimate of DS can-
didates by removing incoherent scatterers.

In this objective, I investigated how to improve the interferometric
phase quality of distributed scatterers by selecting coherent scatterers
in the pixel. I initially applied scattering property based adaptive
filtering to preserve the PS candidates and improve the signal to noise
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ratio of the DS candidates. Moreover, I derived a differential phase
entropy threshold to identify the target DS candidates for adaptive
removal of incoherent scattering mechanisms. I applied the eigenvalue
decomposition on the constructed interferometric coherence matrix to
reconstruct the interferometric coherency matrix for the dominant scat-
terers. In addition, I analyzed how the secondary scattering mechanisms
within the pixel interfere with the dominant scattering mechanism. I
selected the scatterers that are in-phase with the dominant scattering
mechanism and removed the scatterers that interfere destructively. In
this way I removed the incoherent scatterers which improved the inter-
ferometric coherence of the resolution cell. I then applied an average
coherence threshold to select the PS and DS candidates to process in a
multi-temporal InSAR method to derive ground deformation. I con-
cluded that the proposed method significantly improves interferometric
coherence in distributed scatterers. Moreover, utilizing scattering prop-
erties in addition to pixel intensity statistics improved the accuracy of
selection pixels to establishing local homogeneity for the application
of spatially adaptive filtering. Furthermore, the adaptive selection of
secondary scatterers that are coherent improved the pixel coherence
estimate. Consequently, this increased the number of measurement
pixels available for for deformation measurement. The major draw
back in this technique is its computational intensity because it relies
on exhausting search optimization to select scattering mechanism that
interfere constructively with the dominant scattering mechanism. This
is particularly severe when processing large image scenes with millions
of pixels.

It is concluded that the proposed method significantly improves inter-
ferometric coherence estimate in distributed scatterers at the cost of
computational time.

The following research question has been answered:

◮ Which polarimetric parameter can be used to differentiate perman-

ent scatterers from distributed scatterers.

Phase entropy was important in identifying whether there was a
single or multiple dominant scatterers within the resolution cell
thereby effectively differentiating PS and DS candidates.

◮ How can the noisy scattering mechanisms within a resolution cell

be eliminated to improve the interferometric coherence estimate.

The noisy scattering mechanisms was distinguished by implement-
ing an exhaustive search optimization to select coherent secondary
scattering mechanisms. Elimination of the noisy scattering mech-
anisms was accomplished by selecting the scattering mechanisms
that are in-phase with the dominant scattering mechanisms. This
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improved the coherence estimate. Consequently, this increased
the number of measurement pixels available for deformation meas-
urement. Since the main drawback from this technique is the
computational time, by applying a threshold on the eigenvalues
of scattering mechanisms we can limit the number of secondary
scattering mechanism that can be considered, thereby significantly
improving the computational time.

6.2 Reflections

This thesis research focused on improving the phase quality of distributed
scatterers (DS) in differential SAR interferometry context by exploiting the
polarimetric diversity provided from fully and dual polarized SAR images.
This was partly accomplished in three steps:

1. Polarimetric optimization over distributed scatterers and coherence
phase center decomposition to evaluate and quantify the coherence
estimation bias, improvement in number of measurement pixels and
the improvement in measurement accuracy.

2. Exploiting polarimetric scattering properties to more accurately estim-
ate coherency matrix from distributed scatterers in polarimetric SAR
and polarimetric interferometric SAR images and

3. Applying the scattering property based statistically homogeneous pixels
selection method, introducing an entropy of interferometric phases to
select distributed scatterer candidates and selecting only the secondary
scattering mechanisms that are in-phase with the dominant scattering
mechanisms effectively removing noisy scattering mechanisms.

These steps contributed to the improvement of quality in DInSAR analysis
in a natural environment. Since deformation resulting in landslides, volcanic
eruptions and earthquakes may originate in a natural environment, the high
accuracy measurement of these displacements helps to understand the mech-
anism and progression of these natural hazards.

The application of polarimetric optimization on distributed scatterers im-
proved the estimation of coherence of the pixel since polarimetric optimization
routines look for the polarization state that maximized the interferometric
coherence. Besides the validation against GPS measurements, the main
contribution is a coherence decomposition study that assessed the quality
of the optimized coherences in terms of ground deformation, instead of the
numerical value of coherence by itself. This aspect is especially relevant
in vegetated areas, as discussed in Chapter 3 since the phase centers of
different polarimetric channels (e.g. the optimum ones) can move away from
the ground surface, hence not being really good from the final application
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viewpoint. Even though the coherence decomposition provides possible de-
formation measurements on vegetated areas, the interferometric phase is
severely affected by temporal decorrelation especially for data acquired from
spaceborne platforms with longer temporal baseline. Whenever there is a
relatively fast displacement within a short time, temporal decorrelation may
be smaller so a reliable deformation can be retrieved over densely veget-
ated regions. This would further improve the usability of the deformation
measurements.
Estimation of the SAR covariance matrix has been an active research topic to
preserve the information of interest from SAR backscattered signal. In this
research, I attempted to use both the intensity and the scattering mechanism
that can be derived from fully or partially polarized SAR images to select
SHP’s. This approach uses the pixel backscatter intensity in addition to pixel
scattering mechanisms as a homogeneity measure between pixels. Hence its
performance is superior to other SHP selection methods that are based only
on pixel intensity statistics. In addition, the method is devised for a single
PolSAR image coherency matrix estimation but it can easily be adapted
to multi-temporal Polarimetric SAR data stack be it either dual polarized
or fully polarized. A major challenge for doing this is the computational
complexity. For small area image scenes the computational time may be
small but for recently launched partially polarized ScanSAR images such as
Sentinel-1 data sets consisting of millions of pixels the computational burden
may be too high. Since the efficiency of the scattering property based speckle
filter is based on accurately applying target decomposition theorems and
classifying the scattering mechanisms, future work should investigate a target
decomposition theorem with minimum computational burden and maximum
accuracy.
In addition to applying spatially adaptive filtering to improve the signal
to noise ratio, additional processing of DS candidates to remove noise is
required. In this regard, two unique accomplishments were achieved. The
first is the selection of of ideal DS candidates using phase entropy. The
second is removing incoherent scattering mechanisms within a DS pixel.
The approach proposed in the literature relied on identifying DS candidates
by using a threshold of clustered pixels determined by statistical measures.
DS candidates however should be identified on whether a single dominant
scatterer exists within the resolution cell or there are multiple scatterers
within the resolution cell. In this way, utilizing phase entropy measure was
effective in distinguishing the DS candidates for further exploitation. The
interference pattern of the secondary scatterers with the dominant scatterer
was important in significantly improving the signal to noise ratio of the
resolution cell thus improving the coherence. Selection of the coherent scat-
tering mechanisms that maximizes the average coherence of the resolution cell
requires an exhaustive search technique. This puts additional computational
burden to an already computationally intensive PSI analysis. Hence, for
large scenes consisting of millions of pixels, application of this technique is
impractical. Hence, minimization of the computational burden should be
investigated.
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6.3 Recommendations

This thesis investigated how to improve the differential phase quality of
distributed scatterers from fully and partially polarized SAR images for
an improved ground displacement measurement. The proposed methods
improved the phase quality but had several limitations. The following
recommendations are made:

1. Temporal decorrelation remains the main problem affecting repeat pass
SAR interferometry. Hence, the fusion of multi-sensor fully polarimetric
SAR data should be investigated to minimize the temporal baseline
between subsequent image acquisitions.

2. Computational efficiency of the proposed methodologies is a significant
drawback especially in the processing of large image scenes. A com-
putationally efficient target decomposition method should be adopted
as a trade off with estimation bias especially in small scale deform-
ation mapping applications. In addition, it was shown in the thesis
dual polarization SAR data can provide significant improvement when
compared with the traditional single polarization SAR data. Hence,
coherence optimization and target decomposition method pertaining to
dual polarized SAR images should be further explored.

3. The proposed methods rely on the polarimetric coherency and covari-
ance matrices. Unfortunately knowledge about the uncertainty that
arises from the estimation of these matrices is lacking in the literature
so it should be addressed in future studies.

4. Regretfully due to lack of in-situ measurements, the ground deformation
results obtained from adaptively selecting the constructively interfering
scattering mechanisms to increase the pixel coherence could not be
validated and quantified with respect to in-situ measurements. This
should be addressed in future work.

5. Following the previous recommendation, the detection of multiple stable
scatterers within the resolution cell should be explored to increase
measurement point density in the image and the robustness of the
implemented PSI algorithm.
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