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A B S T R A C T

Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate
decomposition and classification of the scattering mechanisms. This paper presents an improved scattering
property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It
applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the
scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with
homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce,
double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scat-
tering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use
either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the
speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real
PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means
filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in
preserving polarimetric information, point scatterers and subtle features in PolSAR data.

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) and polarimetric
interferometric SAR (PolInSAR) are useful to estimate physical para-
meters at the earth surface. The SAR signal is commonly affected by
speckle, arising from the coherent superposition of a number of in-
dependent scatterers within each resolution cell. If the size of the re-
solution cell is much larger than the imaging wavelength there will be
interference between individual scattering producing speckle. In the
presence of speckle the polarimetric response is best taken as a random
value. To determine its probability density distribution, second order
statistics represented by the polarimetric covariance matrix have to be
estimated.

PolSAR speckle filtering and information extraction rely on the
applied stochastic model for the PolSAR data. In homogeneous and
stationary media, PolSAR data can be characterized by a zero mean
multivariate Gaussian pdf (Lee et al., 1994b). The simplest method
proposed for reducing speckle is the boxcar filter (Lee, 1980) that es-
timates the covariance matrix with a moving average operation. The
boxcar filter is effective in removing speckle in homogeneous regions at
the expense of loss in resolution. To overcome this loss, Lee et al.
(1999a) proposed to select similar pixels by using a series of edge
aligned non-rectangular windows, Vasile et al. (2006) used intensity
driven neighborhood region growing based on the image intensity, Lee

et al. (2006) proposed selecting similar neighboring pixels based on
scattering characteristics and Lopez-Martinez and Fabregas (2008)
suggested an adaptive speckle reduction based on additive and multi-
plicative noise model. Further, Deledalle et al. (2015) used non-local
means with weighted maximum likelihood estimation to reduce
speckle, Chen et al. (2011) developed a statistical pre-test method to
select homogeneous patches and Zhong et al. (2014) used a statistical
testing to establish pixel similarity between two patches that follow a
complex Wishart distribution. Most methods, however, focused on pixel
statistics without considering pixel scattering properties. An exception
was Lee et al. (2006) who considered pixel statistics and polarimetric
scattering mechanisms for speckle filtering.

The scattering model based (SMB) speckle filtering method (Lee
et al., 2006) applied the Freeman-Durden model based decomposition
(Freeman and Durden, 1998) to determine the dominant scattering
mechanism power on a pixel by pixel basis. Unsupervised classification
is initialized by grouping pixels into clusters for each canonical scat-
tering mechanism. These are merged into classes for each scattering
mechanism using a Wishart merge distance measure. This method
preserves the dominant scattering mechanisms of each pixel. The fol-
lowing limitations require compensation. First, the Freeman-Durden
model based decomposition tends to overestimate the volume scat-
tering component in urban settings (Yajima et al., 2008; Yamaguchi
et al., 2011). It assumes that all cross polarized return is due to
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vegetation. Rough surfaces and local topography, however, can also
cause depolarization resulting in a higher cross polarization return in
SAR data. Hence, to achieve improved decomposition results from the
Freeman-Durden decomposition it is important to correct for the or-
ientation angle. This increases processing time for speckle reduction.
Second, clustering the scattering classes into classes for each scattering
mechanism implies that pixels that are filtered together belong to the
same scattering mechanism. This clustering of pixels is efficient in case
of relatively accurate decomposition results and classification of scat-
tering mechanisms. If a pixel is dominated by speckle or if its amplitude
level is near the noise floor, decomposition may lead to less accurate
results (Wang and Davis, 1997). Hence, subsequent filtering based upon
this method of selection will lead to less accurate results. Third, in Lee
et al. (2006) the Freeman-Durden decomposition is initialized with a
3 × 3 pre-estimate of the covariance matrix to estimate the three main
scattering mechanisms: single bounce, double bounce and volume. This
decomposition is inherently biased when using a small number of pixel
samples. Its quantification is in-sufficiently addressed in the literature,
although, Lee et al. (2008) evaluated the bias introduced in target de-
composition and concluded that parameters of the scattering me-
chanism are best estimated using at least a 9 × 9 multi-looking
window.

The objective of this paper is to improve the existing SMB speckle
filtering method for PolSAR data. It builds upon SMB filtering by ad-
dressing the specific limitations listed above. The proposed method uses
the Cloude-Pottier eigenvalue-eigenvector decomposition of the co-
herency matrix to reduce bias in the target decomposition. Both coarse
and fine pixel selection are included to minimize the pixel selection
error. It also minimizes the scattering mechanism decomposition and
classification bias by iteratively increasing the number of looks in-
cluded in estimating the scattering mechanism and refining the scat-
tering mechanism classification. The method is applied on both simu-
lated data and real PolSAR data acquired from the AIRSAR airborne
sensor acquired over Flevoland, The Netherlands and San Franscico,
USA.

2. SAR polarimetry

Fully polarimetric SAR sensors measure the scattering matrix
(Sinclair matrix) S. For a single pixel it equals:

= ⎡
⎣⎢

⎤
⎦⎥

S
S S
S S ,HH HV

VH VV (1)

where the complex scattering coefficient SXY indexed as X, Y = (H, V)
represents the horizontal (H) and vertical (V) polarization states. In SAR
polarimetry, S is represented by the target scattering vector k. Assuming
reciprocity i.e. SHV = SVH, the linear target scattering vector of a given

scattering matrix is given in the monostatic case as:

=k S S S[ 2 ]T
HH HV VV (2)

where T designates a matrix transpose (Lee and Pottier, 2009).
For deterministic point scatterers k fully describes the scattering

process. For distributed scatterers, however, k displays a random
property and is modeled (Lee et al., 1994b) by a multivariate complex
circular Gaussian probability density function:

= − −p k
π C
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| |

exp( ).k 3
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(3)

Here C = E{kk†} is the covariance matrix, |C| is the determinant and †

denotes the complex conjugate transpose. Assuming stationarity and
ergodicity in the neighborhood of a pixel, an estimate of the covariance
matrix is obtained by:
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where n is the number of looks used to estimate Z. The distribution of Z
is modeled by the complex Wishart probability density function
(Goodman, 1963). Note that the covariance matrix can be transformed
into the coherency matrix T

= −T C(SU ) (SU ) ,3 3
1 (5)
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is a unitary transformation matrix.

3. Scattering property based contextual speckle filtering

3.1. Scattering mechanism classification

The Cloude-Pottier eigenvalue-eigenvector decomposition (Lee
et al., 1999b) is applied to correct for bias caused by the Freeman-
Durden decomposition. It is selected because it is able to derive the
scattering mechanism (α) and scattering entropy (H) without being
affected by differences in the orientation angle and no a-priori scene
information is required to derive the scattering mechanism.

Based on H and α values, pixels can be classified into their re-
spective scattering classes. The H/α plane (Fig. 1b), however, reveals
continuously distributed H/α values, whereas the class boundaries in
Fig. 1a are crisp. Such ambiguity presents a problem of defining class
mixtures near the boundaries. To resolve it we implemented a fuzzy H/
α classification (Park and Moon, 2007) for the first filtering. This is
followed by the Wishart distance classification in the next iterations
(Lee et al., 1999b).

Fig. 1. (a) The H/α plane showing different scattering
properties, as defined in Cloude and Pottier (1997),
Cloude and Pottier (1996). (b) The H/α density plot
derived from a simulated PolSAR data. The color scale
indicates the number of pixels per data point. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)

A.G. Mullissa et al. Int J Appl  Earth Obs Geoinformation 63 (2017) 78–89

79



3.2. Speckle filtering

We carry out the speckle reduction in two steps. First, we derive the
rules that guide the speckle filter. This step is important to minimize the

pixel selection bias discussed in Section 1. Second, we iteratively refine
the scattering mechanism classification to reduce the estimation of
scattering mechanism and classification bias that arises from initializing
from a small number of looks while improving the filtering result.

3.2.1. Rule derivation
The fuzzy H/α classification output is defined in the H/α plane,

typically resulting in eight scattering classes. The application of the
term ‘classes’ in this context doesn’t imply thematic classes. A physical
interpretation of the classified output is detailed in Lee and Pottier
(2009). Based upon this interpretation, coarse and fine pixel selection
are introduced. Coarse pixel selection groups the scattering classes into
single bounce, double bounce and volume scattering mechanisms. The
canonical scattering mechanisms are derived from the fuzzy H/α clas-
sification output using the procedure described in Ferro-Famil et al.
(2002). Hence, pixels grouped as single bounce scattering are un-fil-
tered from pixels grouped as double bounce or volume scattering. Si-
milarly, pixels grouped as double bounce and volume scattering remain
separate from other groups to preserve the dominant scattering me-
chanism of the pixel. The brightest pixels within the single bounce and
double bounce group larger than a 9 pixel patch are un-filtered i.e. they
keep their original pixel values in order to remove isolated determi-
nistic point scatterers. Fine pixel selection does not group the scattering
classes to their main scattering mechanisms, i.e. pixels from the eight
scattering types remain separate from other classes. Hence, they are
filtered separately even if pixels share the same canonical scattering
mechanism. The brightest pixels from Class 7 (deterministic dihedral
scattering) and Class 9 (Bragg scattering) larger than a 9 pixel patch
remain un-filtered, whereas the other scattering types are filtered from
pixels within the same scattering class.

Depending upon the image scene environment (urban or rural) we
can either use coarse selection, fine selection or a combination of the
two to obtain the optimal output. For pixels thus selected, we use the
local minimum mean squared error estimator (LMMSE) that is com-
monly used to estimate the filtered coherency matrix (Lee et al.,
1999a). Depending on the applied selection rule, pixels within the filter
window belonging to the same scattering type are therefore filtered as:

= + −∼T T b T T( ). (6)

Here ∼T is the result of speckle filtering and 〈T〉 is the average single
look coherency matrix of pixels with the same scattering class as

Fig. 2. Methodology flowchart for the proposed method.

Table 1
Reference coherency matrix (∼T ) for each simulated scattering class (Foucher and Lopez-Martinez, 2014). The coherency matrix in C7 is rank 1 so α, H and A are not defined.

Scattering class Coherency matrix α H A

C1 ⎡

⎣
⎢

− − −
− + −

+ +

⎤

⎦
⎥

i i
i i

i i

5.56 0.03 0.36 0.47 0.24
0.03 0.36 6.64 0.24 0.20

0.47 0.24 0.24 0.20 4.53

56.6° 0.98 0.14

C2 ⎡

⎣
⎢

− − −
− + −

+ +

⎤

⎦
⎥

i i
i i

i i

7.79 0.03 0.50 0.56 0.30
0.03 0.50 5.38 0.20 0.17

0.56 0.30 0.20 0.17 4.38

50.1° 0.97 0.12

C4 ⎡

⎣
⎢

− −
+ +
+ −

⎤

⎦
⎥

i i
i i
i i

14.69 2.59 0.92 1.98 0.85
2.59 0.92 25.39 4.55 0.20
1.98 0.85 4.55 0.20 5.12

57.8° 0.8 0.57

C5 ⎡

⎣
⎢

− −
+

+

⎤

⎦
⎥

i i
i

i

10.95 0.420 0.89 1.17 0.65
0.420 0.89 7.51 0.83
1.17 0.65 0.83 3.29

45.7° 0.89 0.42

C6 ⎡

⎣
⎢

− − −
− + +

+ −

⎤

⎦
⎥

i i
i i

i

10.99 0.45 0.69 0.85 0.73
0.45 0.69 3.38 0.21 0.01

0.85 0.21 0.01 2.05

32.8° 0.76 0.28

C7 ⎡

⎣
⎢

⎤

⎦
⎥

990.02 4.97 7.04
4.97 0.02 0.04
7.04 0.04 0.05

– – –

C8 ⎡

⎣
⎢

+ −
− −
+ +

⎤

⎦
⎥

i i
i i

i i

29.95 23.04 0.79 4.83 2.47
23.04 0.79 29.99 5.21 3
4.83 2.47 5.21 3 3.23

46.9° 0.44 0.57

C9 ⎡

⎣
⎢

− − −
− + − −

+ − −

⎤

⎦
⎥

i i
i i

i i

5.40 1.14 0.34 0.27 0.33
1.14 0.34 0.56 0.01 0.09

0.27 0.33 0.01 0.09 0.16

18.3° 0.26 0.4
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defined in the filtering rule and b is a weight assigned during filtering.
This weight is derived from the total backscattered power I = tr(T) (Lee
et al., 1999a) and evenly applied to each component of T. This proce-
dure is based upon the assumption that the noise is multiplicative, with
unity mean that is uncorrelated with the image.

3.2.2. Iterative refinement
The filtering procedure described in the preceding section is in-

itialized using a 3 × 3 window for single look datasets. If the input
PolSAR coherency matrix is a rank 3 matrix we can decompose and
classify without further averaging. The success of filtering depends
upon accurately determining and interpreting the scattering mechanism
and an accurate classification of the scattering type. As shown in Lee
et al. (2008), estimates of both H and α are close to their true value if
the number of looks equals 81 or above. Unfortunately, point scatterers
are smoothed when initializing with such a large window size. To
correct for this, we initialize with the 3 × 3 window average to obtain

the approximate H/α values and the initial fuzzy H/α classification of
the scattering types and gradually increase the filter window size to
preserve point scatterers while improving the scattering mechanism
estimate and classification output. This classification output is used to
adaptively filter the single look T. Next, we use the adaptively filtered
covariance matrix to derive new H/α values and a new Wishart distance
classification output. We then use the Wishart classification output to
adaptively filter the single look T using a 5 × 5 window. This procedure
is repeated until the desired window is reached and the number of
pixels that switch scattering classes is below a threshold ρ. In this study
a ρ < 10% is used. For most data it takes 4–6 iterations for the filtering
process to terminate. We used an 11 × 11 final window to have suffi-
cient pixels for effective filtering. The methodology flowchart for the
proposed method is given in Fig. 2.

4. PolSAR data simulation

Speckle is present in virtually all SAR data. Accurate quantitative
evaluation of speckle filtering is only possible if a noise free image is
available, which is the case for simulated images. Hence, to apply
quantitative evaluation of the proposed speckle reduction method we
adapted the Monte-Carlo PolInSAR simulation routine proposed by
Cloude (2010) to PolSAR data. In addition, we reproduced the complex
image structure in real PolSAR data by simulating a random image
morphology.

Following (3) we assumed that the stochastic nature of the scat-
tering vector k is completely determined by the covariance matrix C.
We first defined a coherence matrix to be used as a reference. Since the

Table 2
MRF image morphology simulation parameters.

Parameter Value

Prior energy model Potts model
Neighbourhood system Second order with inverse distance weights
Number of iterations 200
Cooling schedule Tk+1 = Tk · σ where To = 10 and σ = 0.9
Starting point Uniform random
Point scatterers Randomly added

Fig. 3. Pauli images of simulated PolSAR data. (a)
Reference image derived from five scattering classes.
The corresponding scattering classes are labeled as
defined in Table 2. (b) Simulated PolSAR data de-
rived for five scattering classes. In the images red
color represents |SHH − SVV|2, blue color represents
|SHH + SVV|2 and green color represents |2SHV|2. (c)
Reference image derived from eight scattering
classes. The corresponding scattering classes are la-
beled as in Table 2. (d) Simulated PolSAR data with
the same color as in (b). (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)
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coherency matrix is a Hermitian positive semi-definite matrix, we fac-
torized the reference coherency matrix ∼T to its respective eigenvalues
and eigenvectors.

=∼T U UΣ .† (7)

Here, U contains the eigenvectors arranged in columns and Σ is a
diagonal matrix containing the corresponding eigenvalues λ. The ei-
genvalues and eigenvectors generate a sequence of n dimensional
complex vectors k, with coherency matrix T. We next generated two
independent real random sequences following Gaussian distributions,
Ga and Gb with mean = 0 and variance = 0.5 and combined them into
a complex series after scaling it by the square root of the appropriate
eigenvalue.

= = … = +e e j n e λ G iG{ }, 1, , , { (0, 0.5) (0, 0.5)}.j j j a b (8)

Next, we generated k by collecting Ga and Gb into a vector e and in-
troducing a complex correlation by multiplying this vector with the
matrix of eigenvectors, i.e. k = U · e. The vector k follows a zero mean
complex multivariate Gaussian pdf as in (3).

Finally, we generated a random image morphology with different
features, by using different ∼T matrices for different scattering classes
extracted from the four look AIRSAR data (Table 1). We used a Markov
random field (MRF) following the Gibbs distribution (Boykov et al.,
2001). The parameters used to simulate a random image morphology
are shown in Table 2.

As stated in different speckle filtering literature, a speckle filter is
supposed to remove speckle noise from distributed scatterers while
preserving edges and point scatterers in a PolSAR image. Hence, the
selection of a deterministic scatterer class and a varying number of
distributed scatterers is reasonable for the evaluation of PolSAR speckle

Fig. 4. Speckle filtering results of false color com-
posite in Pauli basis based on simulated data. The
speckle free and speckled simulated data is shown in
Fig. 2. (a) Pauli channels created from IDAN filter
using window size row of 80 (b) Pauli channels
created from Scattering model based filter with
9 × 9 window. (c) Pauli channels for Refined lee
filter with 9 × 9 window. (d) Pauli channel for Non-
local means with 21 × 21 search window, patch size
of 5 × 5 and threshold coefficient = 20. (e) Pauli
channel for proposed method 11 × 11 window 5
iteration. (f) Pauli channel for the ground truth
image.
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filters. Two simulated images were generated by taking five scattering
classes (Fig. 3a) and eight scattering classes (Fig. 3c). Of these classes
one represents a deterministic Point scatterer and the others represent a
distributed scattering with different α and H values. Speckle was added
to the distributed scattering classes using (8) but no speckle was added
to the deterministic point scatterers.

5. Datasets

To test the performance of the proposed method in addition to the
simulated data, real airborne SAR data from the JPL/NASA AIRSAR
airborne polarimetric SAR sensor (Figs. 6a and 7a ) was used. The
AIRSAR sensor acquires fully polarimetric data in C, L and P band. In
this study the L band was selected to evaluate the proposed speckle
filtering method. A 1024 × 900 subset of AIRSAR data of San

Francisco, USA covers mostly urban area whereas a 1024 × 750 subset
of Flevoland, Netherlands covers almost entirely rural land. The ac-
quisition parameters for the AIRSAR sensor are summarized in Table 3.
The ground truth data from 14 feature types for the Flevoland scene
was adopted from Lee et al. (2001).

6. Results

6.1. Simulated data

To quantitatively evaluate the performance of the different speckle
filtering methods, we calculated the absolute error introduced from dif-
ferent speckle filtering methods. Error is defined as the deviation of an
estimated parameter from its true value. The average error of α for si-
mulated scattering class (i) is obtained as = −i α i α iError( ) mean{| ( ) ( )|}͠ ,

Fig. 5. Speckle filtering results of false color com-
posite in Pauli basis based on simulated data from 8
scattering classes. The speckle free and speckled si-
mulated data is shown in Fig. 2. (a) Pauli channels
created from IDAN filter using window size row of 80
(b) Pauli channels created from Scattering model
based filter with 9 × 9 window. (c) Pauli channels
for Refined lee filter with 9 × 9 window. (d) Pauli
channel for Non-local means with 21 × 21 search
window, patch size of 5 × 5 and threshold coeffi-
cient = 20. (e) Pauli channel for proposed method
11 × 11 window 5 iteration. (f) Pauli channel for
ground truth image.
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where α(i) is the estimated physical scattering mechanism and α i( )͠ is the
reference scattering mechanism. Similar equations apply to the bias of H
and A, respectively. The proposed method compares favorably with the
other speckle filters in preserving polarimetric information (Tables 4 and
5).

Next, we determined the equivalent number of looks (ENL) for each

distributed scattering class, = ( )iENL( ) ζ i
τ i

( )
( )

2
, where ζ(i) is the mean and

τ(i) is the standard deviation of W for class i and took the average of
individual class ENL values. High ENL values indicate a better perfor-
mance of removing speckle from homogeneous regions. The proposed
method compares favorably with all other evaluated methods with re-
spect to the described 5 accuracy measures in reducing speckle from
homogenous regions.

To evaluate the edge preservation ability of the proposed method
we implemented the edge preservation index (EP) as detailed in

Foucher and Lopez-Martinez (2014). We first defined the gradient
preservation index (GP), derived by taking the average ratio between
the observed gradient values on the filtered Span image I to the gradient
on the reference Span image I͠ .

∑=
∑ ∇

∑ ∇= …

= ∇ >

= ∇ >ν

I x

I x
GP 1 | ( )|

| ( )|
.͠

l ν

L x l I x

L x l I x1, ,

( ) ,| ( ) | 0

( ) ,| ( ) | 0

͠

͠ (9)

Here, ∇ is the Sobel gradient operator, L(x) is the class label for pixel x
and ν is the number of distributed scattering classes. EP is derived by
projecting the values of GP in the interval [0, 1] using the triangular
function given as:

= ⎧
⎨⎩

− − <
≥EP 1 |1 GP|, GP 2.

0, GP 2. (10)

We took the average for each scattering class to evaluate the overall

Fig. 6. Speckle filtering results of false color com-
posite in Pauli basis based on AIRSAR airborne L
band data acquired over San Francisco. (a) Original 4
look SAR data (b) 80 window row IDAN filter. (c)
Refined lee filter with 9 × 9 window. (d) Scattering
model based filter with 9 × 9 window. (e) Non-local
means with 21 × 21 search window, patch size of
5 × 5 and threshold coefficient = 20. (f) Proposed
method 11 × 11 window 5 iteration.
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edge preserving performance. Low values of EP indicate edge over-fil-
tering or under filtering, whereas a high EP value indicates a good edge
preservation. We observe that the proposed method performs well in
preserving edges in both simulated data.

To investigate the efficiency of the proposed filter an image profile

was created to compare |SHH + SVV|2 intensity profile with the other
state of the art filtering methods (Fig. 9). The new filter achieves the
best filtering results as compared with the true |SHH + SVV|2 intensity.
The non-local means and the proposed method adequately remove
speckle while maintaining determisitic point scatterers, whereas the
poor edge preservation performance of SMB is clearly indicated in
Fig. 9a.

6.2. Airborne AIRSAR data

Figs. 6 and 8 show that the IDAN filter performs well in preserving
edges but it didn’t fully remove the speckle noise found around volume
scatterers. SMB was not successful in preserving point scatterers and
edges. Furthermore, it introduced artifacts throughout the image
(Fig. 8c). The refined Lee filter preserved strong point scatterers but
smoothened out other point scatterers. The non-local means had a
variety of results when used in conjunction with the refined Lee and Lee
sigma filter (Lee et al., 2009). It preserved point scatterers but a general
over-filtering is observed when used with refined Lee filter. It achieved
its best result when used with the Lee sigma filter with a 21 × 21
search window, 3 × 3 target search window, patch size of 5 × 5, a
9 × 9 general filter window and a threshold coefficient equal to 20. The
proposed method, was successful in preserving point scatterers and
edges while reducing speckle noise using an 11 × 11 window and 5
iterations.

Fig. 7. Speckle filtering of a subset of 300 × 235
pixels from the AIRSAR San Francisco bay image. (a)
Original 4 look data. (b) Scattering model based
filter with 9 × 9 window. (c) Non-local means with
21 × 21 search window, patch size of 5 × 5 and
threshold coefficient = 20. (d) New method 11 × 11
window 5 iteration.

Table 3
JPL/NASA AIRSAR airborne polarimetric SAR sensor acquisition parameters.

Parameter Value

Sensor AIRSAR airborne sensor
Frequency/wavelength 1.26 GHz/23 cm
Polarization Full
Range resolution 3.75 m
Swath width (nominal) 10 km
Off-Nadir angle (normal) 20–60°

Table 4
The absolute error in α, H and A estimates from using different speckle filtering methods
and the ENL and EP calculated from different speckle filtering methods on simulated five
scattering class PolSAR data. The error values for α are in degrees.

Method α H A ENL EP

IDAN 2.109 0.05 0.068 14.32 0.904
Lee 3.1716 0.072 0.137 5.861 0.9518
SMB 1.554 0.053 0.118 1.4828 0.6233
NL 4.373 0.0649 0.103 7.4298 0.9827
New 1.6817 0.022 0.0428 15.014 0.978

Table 5
The absolute error in α, H and A estimates from using different speckle filtering methods
and the ENL and EP calculated from different speckle filtering methods on simulated eight
scattering class PolSAR data. The error values for α are in degrees.

Method α H A ENL EP

IDAN 3.374 0.073 0.075 12.621 0.92
Lee 3.838 0.095 0.126 3.987 0.8463
SMB 2.353 0.095 0.1175 0.296 0.3476
NL 4.223 0.073 0.09 5.895 0.8516
New 2.208 0.0419 0.066 9.836 0.9706

Table 6
Speckle filtering methods and their respective computational efficiency measured per
pixel when run using an Intel Core i7 CPU with 8 GB memory run on a 64 bit Linux
environment.

Method Computation time, s

IDAN 3.97 × 10−5

Refined Lee 4.02 × 10−5

SMB 1.99 × 10−4

NL 2.72 × 10−4

Proposed method (coarse selection, 5 iterations) 2.1 × 10−3

Proposed method (fine selection, 5 iterations) 6 × 10−3

Proposed method (coarse (2 iterations) and fine selection
(3 iterations))

4.4 × 10−3
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For AIRSAR data two separate experiments were conducted in a
completely rural scene over Flevoland, and a mixture of urban and
natural over San Francisco bay region. The refined Lee and scattering
model based filters blurred the edges between different agricultural
land parcels and roads (Fig. 8). The non-local means filter and the new
method both preserved edges while reducing speckle. The non-local
means and the new method performed well in reducing speckle while
preserving the boundaries between different agricultural land parcels
while slight over-filtering was observed on built-up found in the farm
lands. In this regard, the new method performed well in preserving the
isolated built up features in the image. In the San Francisco bay scene
(Fig. 7), the scattering model based filter produced better preservation
of points and edges. However, subtle image features were still over
filtered. The non-local means filter performed well in preserving edges
but it also over filtered built up features that are mixed with vegetation
whereas the proposed filter preserved these mixed features.

The proposed method compared favorably with other state of the art
speckle filters in preserving point scatterers and edges, even though a
block effect is observed around edges because the filter was initialized
using a 3 × 3 boxcar average. The non-local means filter (NL) also
performed well in preserving points but it showed some deficiency in
maintaining edges near feature boundaries. The refined Lee filter failed
to preserve many point scatterers and resulted in over-filtering in all
regions. The scattering model based filter (SMB) blurred all point
scatterers and edges and the IDAN filter preserved the points but failed
to filter out the speckle noise from homogeneous regions (Figs. 6 and 8).

6.3. Effect of speckle filtering for thematic applications

To evaluate the performance of the proposed speckle filter we ap-
plied thematic classification to speckle filtered PolSAR data from dif-
ferent speckle filters and compared the classified output with ground

Fig. 8. Speckle filtering results of false color com-
posite in Pauli basis based on AIRSAR airborne L
band data acquired over Flevoland, Netherlands. (a)
Original 4 look SAR data. (b) 80 window row IDAN
filter. (c) Refined lee filter with 9 × 9 window. (d)
Scattering model based filter with 9 × 9 window. (e)
Non-local means with 21 × 21 search window,
patch size of 5 × 5 and threshold coefficient = 20
(f) Proposed method 11 × 11 window 5 iteration.
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truth data adopted from Lee et al. (2001). Before applying classification
we split the ground truth data into training area and a test area. A
supervised Maximum Liklihood Wishart distance classifier (Lee et al.,
1994a) was implemented on the IDAN, refined Lee, SMB, NL and the
proposed method were applied.

It can be observed from Table 7 that the classification accuracy of
the proposed method is slightly lower than that of IDAN, refined Lee
and SMB. This is due to the generalized feature type indicated by the
ground truth (Fig. 10), which differs slightly from the signal variation
from the PolSAR data. NL and the proposed method were both designed
to preserve spatial details in the PolSAR image. This results in deviation
from the generalized ground truth image. To improve the classification
accuracy for the proposed method it is recommended to use a larger
than 11 × 11 window.

To analyze the effect of speckle filtering on urban scatterers we
analyzed the canonical scattering mechanisms from the AIRSAR San
Francisco scene. We selected a 100 × 100 patch from the image scene
that was built up. We applied Cloude-Pottier eigenvalue and eigen-
vector decomposition and the unsupervised Wishart classification to
derive the scattering mechanisms from speckle filtered PolSAR data. A
ratio analysis of the scattering contribution from the three canonical

scattering mechanisms after applying different speckle filters was de-
rived.

It can be observed from Table 8 that the proposed method preserves
the double bounce component better than the other speckle filtering
methods. Different thematic application require different levels of fil-
tering. As indicated in Table 7 thematic applications involving agri-
culture and forestry require more filtering hence preservation of subtle
variations may not be important. With the exception of precision
agriculture. On the contrary, urban applications such as characteriza-
tion of urban scattering often requires preservation of resolution. Hence
the optimal speckle filter should perform well in both applications. In
this regard, the proposed speckle filter achieved good result. A future
study should further analyze the effect of speckle filtering on different
thematic applications.

7. Discussion

The proposed method works well with L band PolSAR data. It
should be further evaluated for application with short wavelength SAR
data in particular for X band high resolution airborne PolSAR data. For
instance, the rule deriving the assignment of scattering classes for fil-
tering should be adjusted when using short wavelength high resolution
sensors because pixels defined as surface scatterers in L band will be
volume scatterers in X band.

We selected the Cloude-Pottier eigenvalue-eigenvector decomposi-
tion to replace the Freeman-Durden model based decomposition to
minimize the a-priori information requirement in the image scene and
minimize the bias from the decomposition method. The Cloude-Pottier
eigenvalue-eigenvector decomposition is also roll invariant. Hence, an
extra processing step of orientation angle compensation is not required.
To minimize the pixel selection bias we applied the fine pixel selection

Fig. 9. Intensity profile from simulated data
for |SHH + SVV|2 for the different speckle
filters as compared with the original un-
filtered data and the ground truth image. (a)
Scattering model based filter. (b) Non-local
means filter. (c) Proposed method. (d)
Location where the profile was taken.

Table 7
The classification accuracy for the speckle filtered PolSAR data using different methods.

Method Observed accuracy Kappa coefficient

IDAN 0.9161 0.9084
Refined Lee 0.9181 0.9105
SMB 0.9132 0.9051
NL 0.9045 0.8954
Proposed method 0.9074 0.8987
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in volume scatterers in which all pixels with different scattering prop-
erties are not filtered with each other. In addition, MMSE is applied to
all pixels in each scattering category which resulted in better pre-
servation of edges in volume scatterers. To mitigate the bias introduced
by using a small number of samples in estimating the scattering me-
chanisms and classification we adopted an iterative decomposition and
classification approach. Initializing with a fuzzy H/α classification
helped to achieve higher accuracy than crisp Wishart H/α classification.
Since speckle level is minimized we applied the crisp Wishart distance

classification on subsequent iterations thus maintaining a high classi-
fication accuracy while improving computational efficiency. The com-
bination of these three steps resulted in an overall improvement of the
speckle reduction results (Figs. 4–8).

The initial fuzzy H/α classification to designate the different scat-
tering mechanisms resulted into improved classification which is cri-
tical for a successful application of this method. Fuzzification of the H/α
plane led to improved identification and consequent classification of
scattering mechanisms. In addition, coarse pixel selection was effective
in filtering scenes with a mixture of urban and rural features as in the
San Francisco scene. For dominantly rural scenes as in the simulated
data and the Flevoland scene, best results were obtained for a mixture
of coarse and fine pixel selection. Initial classification of scattering
mechanisms was also attempted using the crisp unsupervised Wishart
distance classifier (Lee et al., 1999b) and compared with the fuzzy H/α
classification. Both classifiers correctly classified surface scatterers
(Bragg and random surface scattering) but the unsupervised Wishart
classifier underestimated the dihedral scattering component identified
on the H/α plane.

The efficiency of the speckle filters for different thematic

Fig. 10. Supervised Wishart classification of AIRSAR
airborne L band data acquired over Flevoland,
Netherlands. (a) Ground truth data adopted from Lee
et al. (2001), (b) IDAN filter, (c) Refined Lee filter,
(d) SMB, (e) and NL (f) proposed method.

Table 8
Scattering mechanism contribution after application of different speckle filtering
methods.

Method Single bounce Double bounce Volume

Refined Lee 0.5% 9.91% 89.58%
SMB 1.7% 11.36% 86.93%
NL 0.009% 9.27% 90.71%
Proposed method 1.54% 12.16% 86.28%
4 look original data 2.46% 18.34% 79.19%
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applications is different depending on the design parameters of the
filter. If the filter is designed to preserve edges it tends to over filter the
homogeneous regions in the image thereby more suited for agricultural
application. The proposed method was designed to have enough trade
off in between smoothing features, preserving edges and point features.
Hence, it under performs as compared with IDAN, refined Lee and SMB
in thematic applications where spatial variation is un-important as in
small scale agricultural applications. This can be mitigated by using a
larger than 11 × 11 filter window. In urban thematic applications the
proposed method compares favorably with other speckle filters because
the filter is designed to preserve polarimetric information, spatial de-
tails and point scatterers.

The proposed method has a limitation of achieving good result at
the price of computational time (Table 6). This can be prohibitive when
processing a large image scene consisting of millions of pixels. This is
the main drawback observed from employing the new filtering ap-
proach. To reduce the computational time the fuzzy H/α classification
can be replaced with the crisp unsupervised Wishart classification at the
risk of less accurate scattering type classification output. The proposed
technique can be easily extended to filter dual polarization data ob-
tained from sensors such as Sentinel-1. It can also be extended to filter
PolInSAR data for coherence estimation. In the current study the scope
was limited to qualitative and quantitative evaluation of speckle fil-
tering performance. In future work comparisons should be made with
ground truth data to verify the efficacy of the proposed speckle filtering
method.

8. Conclusions

The proposed method expands the scattering model based polari-
metric speckle filter (Lee et al., 2006). The study shows that the pro-
posed method compares favorably to other methods such as the refined
Lee filter, the scattering model based filter and the non-local means
filter. We conclude that it performs robustly in a variety of image
scenes. However, for small scale agricultural applications it does not
perform well. We further conclude that the strength of the proposed
method lies in accurately classifying scattering mechanisms that are
obtained by iteratively refining the H/α and coherence matrix esti-
mates. Its performance compares favorably with the edge aligned fil-
tering of the refined lee or the patch based Wishart similarity test
method implemented in the non-local means filter. The main observed
limitation is that it is computationally expensive.
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