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Polarimetry-Based Distributed Scatterer Processing
Method for PSI Applications

Adugna G. Mullissa , Daniele Perissin , Valentyn A. Tolpekin, Member, IEEE, and Alfred Stein

Abstract— Permanent scatterer interferometry is a multi-
temporal interferometric synthetic aperture radar technique
that produces high-accuracy ground deformation measurement.
A high density of permanent scatterer (PS) is required to provide
accurate results. In natural environments with low PS density,
distributed scatterers (DSs) could serve as additional coherent
observations. This paper introduces a polarimetric scattering
property-based adaptive filtering method that preserves PS candi-
dates and filters DS candidates. To further increase the coherence
estimate of DS candidates, the technique includes a complex
coherence decomposition that adaptively selects the most stable
scattering mechanisms, thus improving pixel coherence estima-
tion. The proposed method was evaluated on 11 quad-polarized
ALOS PALSAR images and 21 dual-polarized Sentinel-1
images acquired over San Fernando Valley, CA, USA, and
Groningen, The Netherlands, respectively. The application of this
method increased the number of coherent pixels by almost a
factor of eight compared with a single-polarization channel. This
paper concludes that a coherence estimate can be significantly
improved by applying scattering property-based adaptive filter-
ing and coherence matrix decomposition and accurate displace-
ment measurements can be achieved.

Index Terms— Adaptive filtering, distributed scatterers (DSs),
multitemporal interferometric synthetic aperture radar (InSAR),
permanent scatterer interferometry (PSI), polarimetric optimiza-
tion, polarimetric synthetic aperture radar interferometry.

I. INTRODUCTION

MULTITEMPORAL interferometric synthetic aperture
radar (InSAR) is a well-studied Earth observation tech-

nique that provides a millimeter-scale accuracy in ground
deformation measurements [1], [6], [8], [14], [27]. It aims
to identify stable radar targets that are strong deterministic
scatterers and exploits their differential phase stability to
measure ground displacement. To derive accurate model fitting
for displacement measurement, a dense network of permanent
scatterer (PS) candidates is required. Hence, multitemporal
InSAR works well in urban areas, where scattering from
buildings and other man-made structures guarantees a dense
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network. However, it has achieved limited success in obtaining
dense PS candidates in natural environments.

To overcome this limitation, extended radar targets, termed
distributed scatterers (DSs), were exploited to obtain dense
pixel candidates. These targets provide moderate coherence
as they are affected by temporal and baseline decorrelation.
By applying adaptive spatial filtering techniques, the signal-
to-noise ratio (SNR) for these targets may be improved.
In previous works, different statistical methods were used to
distinguish PS and DS candidates. Reference [9] used the
Kolmogorov–Smirnov test to evaluate the similarity of the
amplitude distribution in two image pixels, and [12] applied
the Anderson–Darling test statistic. Reference [22] applied
a robust t-test to improve the effectiveness of identifying
statistical homogenous pixels (SHPs). With the availability of
fully polarimetric data, [25] applied a likelihood ratio test
to establish the similarity of two Wishart matrices in two
pixels. To compute the interferometric coherence, pixels are
categorized into SHP on which spatial averaging is performed.
Reference [27] selected DS candidates by applying weights to
interferograms to identify DS that are coherent in portions
of the interferogram stack. This method relaxed restrictions
imposed by the permanent scatterer interferometry (PSI) tech-
nique is proposed in [8].

Combined PS and DS interferometry, however, is effective if
similar multiple scattering mechanisms are present in the res-
olution cell. In practice, when using medium-resolution SAR
data, different DS scattering mechanisms are mixed both in
mixed rural–urban areas and rural areas. Even though the SNR
is improved by multilooking, the interference between the
mixed scattering mechanisms decreases the overall coherence
estimate in the resolution cell. This has important implications
in deformation measurements when some of these scattering
mechanisms are stable and some are not. Reference [11]
introduced the Component extrAction and sElection SAR
method that is based on using a principal component analysis
to decompose the covariance matrix to mitigate the effects
of layover in urban areas. This method is able to reduce the
effects of decorrelation in the DS pixels. Recently, [2] applied
an eigendecomposition on the coherence matrix to obtain the
dominant scattering mechanism within DS pixels. This method
is effective in reducing decorrelation by selecting the dominant
scattering mechanism to derive the interferometric phases.
However, it assumes that all secondary scattering mechanisms
may constitute noise.

In this paper, polarimetric scattering mechanism-based
adaptive spatial filtering is introduced to filter DS candidates.
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The coherence interferogram decomposition method [2] is
modified to adaptively select secondary scattering mechanisms
that interfere constructively with the dominant scattering
mechanism. This method is applied in quasi-permanent scat-
terer (QPS) interferometry [27]. The objective of this paper is
to adaptively filter DS candidates and select the most stable
scattering mechanisms in the DS cell. In doing so, we aim to
improve the pixel coherence estimate in a mixed urban–rural
scene.

This paper is organized as follows. The methodology
employed in this paper is described in Section II. The data
sets used in this paper in Section III. Results obtained from the
methods are shown in Section IV. Discussions and conclusions
on the obtained results are presented in Section V.

II. METHOD

A. SAR Polarimetry

Fully polarimetric SAR sensors measure the scattering
matrix S, which can be presented as

S =
[

SHH SHV
SVH SVV

]
(1)

where the complex scattering coefficient SXY indexed as
X, Y = (H, V ) represents the horizontal (H ) and vertical (V )
polarization states. In SAR polarimetry, this scattering matrix
is represented by the target scattering vector k. Vectorization
expands the scattering matrix using simpler canonical scatter-
ing mechanisms. The Pauli target scattering vector of a given
scattering matrix in the monostatic case assuming reciprocity,
i.e., SHV = SVH, is given as [17]

k = 1√
2
[SHH + SVV SHH − SVV 2SVH]T (2)

where T designates a matrix transpose. In dual-polarimetric
data as in Sentinel-1 configuration (VH VV), k reduces to

k = [SVV 2SVH]T . (3)

For deterministic point scatterers, k describes the scattering
process completely. For DSs, however, k displays a random
property depending on the condition that the SAR wavelength
is smaller than the resolution cell. Hence, k is modeled by
a multivariate complex circular Gaussian probability density
function [18]. The second-order statistics represented by the
coherency matrix T that completely define the randomness
of k are computed by assuming stationarity and ergodicity
given as

T =
〈
ki k

†
i

〉
= 1

n

n∑

i=1

ki k
†
i (4)

where † is the conjugate transpose, 〈〉 is spatial or temporal
average of pixels, and n is the number of samples or looks
used to estimate T . In this paper, stationarity and ergodicity
are assumed in time so n represents the number of images in
the stack. Notice that no spatial averaging is applied, since
n is obtained from the temporal dimension. The polarimetric
coherency matrix T contains only polarimetric information.
T is modeled by the complex Wishart probability density
function [13].

B. Target Decomposition
Target decomposition theorems are used to determine

the dominant scattering mechanism present in the PolSAR
data. The Cloude–Pottier eigenvalue–eigenvector decomposi-
tion method [5] breaks down T into a sum of elementary
scattering contributions. T is a Hermitian positive semidefinite
matrix, and hence, it can be factorized into a matrix of
eigenvalues and eigenvectors. Thus

T =
3∑

i=1

σi ui u
†
i (5)

where ui is the eigenvector and σi is the eigenvalue. The eigen-
vector can be further expanded by using physical parameters
of targets, i.e.,

ui = [cosαi e jδi sin αi cosβi e jψi sin αi sin βi ]T (6)

where α refers to the physical scattering mechanism as
described in [5], β refers to the orientation of the target within
the RADAR line of sight, and δ and ψ are the copolar and
cross-polar phase angles, respectively. The average physical
scattering mechanism α̃ is obtained as

α̃ =
3∑

i=1

Piαi , where Pi = σi∑3
i=1 σi

(7)

where Pi is the probability obtained from the eigenvalues (σ ).
To describe the statistical disorder of the scattering mecha-
nisms, the scattering entropy is used, given as

H = −
3∑

i=1

Pi log3 Pi . (8)

In the Cloude–Pottier target decomposition, α̃ typically
assumes a value between 0° and 90° and H assumes a value
between 0 and 1. α̃ values that are close to 0° resemble
surface scattering, whereas α̃ = 45° resembles a volume
scatterer and α̃ = 90° indicates a double-bounce scattering
mechanism. H values close to 0 represent a deterministic
scattering mechanism and an H value close to one represents
a random scattering, where there is no dominant scattering
mechanism. However, α̃ by itself is not enough to define
the scattering mechanisms, and hence, the different scattering
mechanisms are described in the H/α̃ plane [19].

C. Homogenous Pixel Selection
To preserve PS candidates in multitemporal InSAR process-

ing and filter DS candidates, homogenous pixel patches
should be identified. In this paper, similarity between the
objective pixel to be filtered and its neighboring pixels
within a neighborhood window is established based on
similar scattering properties within spatially interconnected
pixels.

The Cloude–Pottier eigenvalue–eigenvector decomposi-
tion [5] provides the scattering properties, i.e., average scat-
tering mechanism (α̃) and scattering entropy (H ) in each
resolution cell. We derive the neighborhood similarity by
classifying the scattering mechanisms. This is accomplished
by implementing the Wishart distance measure [19] between
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the pixel’s T estimate and the coherence matrix of the
mth scattering mechanism class, Vm . Here, Vm = E[T ] for
T computed on ωm , that is, the pixels belonging to the
mth scattering mechanism class. The distance measured
between pixel T and Vm is given as

d(T, Vm) = ln | Vm | + Tr
(
V −1

m T
)
. (9)

Here, ωm is the pixel belonging to the mth scattering mecha-
nism class. The classification is implemented using an iterative
combination of the unsupervised target decomposition clas-
sifier and the supervised Wishart classifier [19]. The initial
scattering mechanism class was derived for each pixel by
taking the zone center in the H/α̃ scatter plot [5]. For
dual-polarized data, the H/α̃ zone is modified, as discussed
in [16]. In subsequent classifications, the average T from each
scattering class defined in the H/α̃ plane is used to define
the new class coherence matrix Vm , and each pixel in the
image is classified based on the new Vm value. This process is
repeated until a termination criterion is reached. In this paper,
the number of pixels switching class when compared with a
previous classification result is used.

The SHPs are defined within a p× p pixel window. We first
discard isolated pixels that do not belong to a scattering class
of the objective pixel to be filtered that is not spatially con-
nected directly or through other SHPs. The spatially adaptive
filtering is defined for pixel W and all SHPs connected to
pixel W . The brightest pixels that belong to the deterministic
single-bounce or double-bounce class are left out as these may
be PS candidates. This is accomplished by using the concept
utilized in the Lee sigma filter [21]. We first calculate the
98th percentile of the double-bounce class obtained from the
temporal average of T22 intensity image [(1/n)

∑n
i=1 |SHHi −

SVVi |2] and single-bounce class obtained from the temporal
average of T11 intensity image [(1/n)

∑n
i=1 |SHHi + SVVi |2].

The 98th percentile and a threshold of 5 pixels within a
window of 3 × 3 is used to determine if the target is a
strong scatterer. Once the PS and DS patches are identified,
adaptive spatial filtering of the objective pixel is performed
within a p × p pixel window on the DS candidates only. The
term spatial adaptive filtering mentioned throughout this paper
refers to the selective complex averaging of pixels based on
the identified SHPs. It includes the generation of SHPs by
using scattering properties and space adaptive averaging of
DS pixels. The methodology flowchart for the generation of
SHPs is summarized in Fig. 1.

D. Polarimetric Optimization
Polarimetric optimization is a method applied to increase the

differential phase quality and number of PS and DS involved
in PSI by selecting the polarization state that is least affected
by decorrelation [15], [24], [26]. To this effect, we first
define the polarimetric interferometric coherency matrix Z ,
containing both polarimetric and interferometric information.
Z is given as

Z = 〈K K †〉 =
[

Tii 'i j

'†
i j Tj j

]
, with K =

[
kT

i kT
j
]T (10)

Fig. 1. Methodology flowchart for the selection of PS and DS SHPs.

where Tii and Tj j are the coherency matrices related to images
i and j , respectively, and 'i j (i &= j) is the polarimetric
interferometric correlation matrix.

The interferometric coherence γi j is formulated by project-
ing the scattering vectors ki and k j onto the complex unitary
vector ω

γi j =| γi j | eiφ = ω†'i jω√
(ω†Tiiω)(ω†Tj jω)

. (11)

Coherence optimization aims at finding the ω values that
maximize the average coherence amplitude. The complex
unitary projection vector ω can be represented with parameters
that resemble the physical attributes of radar targets, as shown
in (6). Hence, it is parameterized as

ω =




cosα

eiδ sin α cosβ
eiγ sin α sin β



 (12)

with

0 ≤ α ≤ π/2, 0 ≤ β ≤ π, − π ≤ δ ≤ π and − π≤γ ≤π.

For dual-polarized data, ω reduces to

ω =
[

cosα
eiδ sin α

]
. (13)

The optimal scattering mechanism ω is obtained by numerical
optimization of the four parameters described in (12) or the
two parameters in (13) that provide the highest coherence
amplitude in (11). Numerical optimization routines, such as
the conjugate gradient descent method [10], can be used to
obtain the optimal parameter values.
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Fig. 2. Pixel classes utilized in multitemporal InSAR analysis.
(a) PS candidate. (b) DS candidate. (c) DS candidate with two distinct scat-
tering types.

E. DS Selection and Processing

In the traditional PSI analysis, PS candidates are targeted
for further analysis in the multitemporal InSAR processing
framework. These pixels correspond to a strong point scatterer,
where all other secondary scatterers present within the reso-
lution cell are dominated [see Fig. 2(a)]. In contrast, DS can-
didates are characterized by a scattering mechanism where
none of the mechanisms dominate [see Fig. 2(b) and (c)].
In practice, it can either be one type of scattering mecha-
nisms in the resolution cell where none of the mechanisms
dominate [see Fig. 2(b)] or it can be a mixture of different
scattering mechanisms where some mechanisms are slightly
dominant on the others [see Fig. 2(c)]. If there is a mixture
of scattering mechanisms within the resolution cell, phase
decomposition [2], [11] can be applied to select the most
stable scattering mechanisms for application into the different
multitemporal InSAR analysis methods [9], [14], [27].

To characterize the differential phase vectors of DS pixels,
we first need to derive the interferometric coherence
matrix + [9]. To this effect, we extend the polarimetric
optimization routine described in Section II-D from a single-
baseline to a multibaseline case to determine the optimal polar-
ization state ω. The polarimetric interferometric coherency
matrix Z discussed in (10) is expanded to the multibaseline
case as

Z = 1
NW

∑

K∈η
K K † =




Tii · · · 'in
...

. . .
...

'†
in · · · Tnn



 (14)

where K = [kT
i · · · kT

n ]T , η represents a patch of homo-
geneous pixels defined in Section II-C containing NW pixels
and i ∈ [1, 2, . . . , n]. In the multibaseline case, the optimal
polarization state ω is obtained by numerical optimization
of the parameters described in (12) and (13) that provides
the highest average coherence of the ((n(n − 1))/2) set of
interferograms. Therefore, + is constructed as

+ = 〈ss†〉 = 1
NW

∑

K∈η
ss† =





1 γ12 · · · γ1n
γ ∗

12 1 · · · γ2n
...

...
. . .

...
γ ∗

1n γ ∗
2n · · · 1



 (15)

where s = [si · · · sn]T is the normalized polarimetric
scattering coefficient of a stack of n images which is derived
as si = (Ii/((Ii I ∗

i )1/2)) with Ii = ω†ki . + is distinctly differ-
ent from T and Z , because it contains only interferometric
information. + is a Hermitian positive semidefinite matrix
where each element corresponds to the complex interferomet-
ric coherence γi j , with the modulus representing the coherence
amplitude and the argument representing the interferometric
phase. The flat earth and topographic phase contribution are
removed from the off-diagonal components of + prior to
adaptive spatial filtering.

An eigenvalue decomposition routine is applied to decom-
pose + into its respective eigenvalues and eigenvectors using
a singular value decomposition (SVD). It is given as

+ = Q-Q∗ =
n∑

i=1

λi qi q
†
i (16)

where Q = [q1 . . . qn] is the orthogonal eigenvectors arranged
in columns and - is the diagonal matrix containing nonzero
eigenvalues (λ) arranged in the decreasing order. The eigenvec-
tors represent the scattering mechanisms, and the eigenvalues
represent the statistical weight assigned to each scattering
mechanism.

To describe the statistical disorder of each scatterer type,
the scattering entropy H described in Section II-B can be used.
We can modify the equation for H to derive the statistical
disorder of the phases (/) in a resolution cell as

/ = −
n∑

k=1

Pk logn(Pk) with Pi =
λi∑n

k=1 λk
and

n∑

k=1

Pk = 1.

(17)

For low / values, the resolution cell is dominated by a
deterministic point scatterer that dominates other scatterers.
Therefore, the second and higher eigenvalues within the reso-
lution cell may be neglected as noise sources. For strong point
scatterers, such as PS candidates, the SVD decomposition
results in one nonzero eigenvalue representing the strong scat-
terer, indicating a single dominant scattering mechanism [17].
In this case, (16) simplifies to + = λ1 q1 q†

1 . Hence, for PS
candidates, the coherence matrix obtained from the dominant
scattering mechanism +(q1) and the original coherence matrix
are nearly identical, i.e., + ≈ +(q1). In practice, for entropy
values closer to zero, the scattering media can be considered as
deterministic, and the dominant scattering matrix component
can be extracted as the eigenvector corresponding to the largest
eigenvalue [3], [4]. In this case, interference of secondary scat-
terers with the dominant scattering mechanism is insignificant
and can be ignored. Hence, the optimal average coherence
values can be achieved by discarding all secondary scattering
mechanisms, and the optimal coherence matrix +(q) reduces
to +(q) = +(q1) [2].

For DS candidates with higher / values, two cases are
distinguished. The first case is that / is close to 1. This indi-
cates that there are at least n mutually orthogonal scattering
mechanisms with a similar amplitude. In this case, scattering
can be characterized as a random noise process. Hence, it is
considered a random DS and will yield a low-coherence
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Fig. 3. Absolute value of the polarimetric interferometric coherence matrix
extracted from ALOS PALSAR data. (a) PS candidate for +. (b) DS candidate
for +. (c) PS candidate derived from adaptive selection of constructively
interfering scattering mechanisms +(q). (d) DS candidate derived from
adaptive selection of constructively interfering scattering mechanisms +(q).
For the PS candidate, the coherence amplitude is high in all interferograms
in both + and +(q). For the DS candidates [(b) and (d)], it can clearly be
seen that coherence improves in almost all interferograms except in images
six and seven where the effect of baseline decorrelation occurs.

estimate, and the pixel is useless for multitemporal InSAR
analysis. The second case is that / achieves a moderate value.
This indicates that there are n dominant scattering mecha-
nisms with decreasing weights from most dominant to least
dominant. An analysis of secondary scattering mechanisms
and their differential phase interference pattern, however,
revealed that the differential phases of some scattering mech-
anisms are in-phase. The scattering mechanisms are in-phase
when they follow the same differential phase pattern indicat-
ing the same deformation pattern. Therefore, the coherence
matrix adds up to a higher pixel coherence amplitude. Hence,
by adaptively selecting only the scattering mechanisms with
differential phases that are in-phase with the primary scattering
mechanism, we can maximize the amplitude of the coherence
sum. Even for very low entropy values, however, some of the
secondary scattering mechanisms may interfere constructively,
thus providing an incremental improvement to the coher-
ence. However, the coherence from the strong scatterer is
already high [see Figs. 3(a) and (c) and 4(a) and (c)], higher
than the quality threshold imposed on multitemporal InSAR
processing. Hence, for computational efficiency, it is suggested
to select a threshold for entropy values where the secondary
scattering mechanisms are significant enough to increase the
coherence estimate above the threshold values. The selection
of these threshold values should be evaluated on a case-to-
case basis. The adaptive selection of secondary scattering
mechanisms that interfere constructively is achieved by first
defining an arbitrary interferometric coherence matrix +(C)

Fig. 4. Absolute value of the polarimetric interferometric coherence matrix
extracted from Sentinel-1 data. (a) PS candidate for +. (b) DS candidate for +.
(c) PS candidate derived from adaptive selection of constructively interfering
scattering mechanisms +(q). (d) DS candidate derived from adaptive selection
of constructively interfering scattering mechanisms +(q).

constructed from the subset of eigenvectors as

+(C) =
∑

i∈C

λi qi q
†
i where C ⊂ {1, 2, . . . , n} (18)

where C is the subset of the eigenvector indices. Since
the coherence matrices are Hermitian positive semidefinite
matrices of which the strictly upper triangular elements rep-
resent unique values for the interferometric phase. We use
the ((n(n − 1))/2) strictly upper triangular elements of the
coherence matrix in the optimization routine. The optimization
criterion for selecting the constructively interfering scattering
mechanisms is the amplitude of the sum of complex coherence
values given as

ε(C) =
∣∣∣∣∣

n∑

b=2

b−1∑

a=1

[γab]
∣∣∣∣∣ (19)

where a and b are the row and column number of the
elements in +(C) and ε(C) is the amplitude of the sum of
the upper traingular coherence values in +(C). The optimal
set of eigenvectors Copt selected by discarding the unstable
scattering mechanisms is given by

Copt = arg max
C

{ε(C)} (20)

and the optimal coherence matrix +(q) calculated from the
selected optimal subset of eigenvectors is given as

+(q) =
∑

i∈Copt

λi qi q
†
i . (21)

As is evident from (20), the amplitude of the coherence sum is
maximized by using an exhaustive search optimization. This
can be computationally expensive if a large stack of images
is being processed.
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TABLE I

LIST OF SENTINEL-1 AND ALOS PALSAR DATA USED IN THIS PAPER

The proposed method workflow is summarized as follows.
1) Apply the scattering property-based adaptive spatial

filter to identify and filter DS.
2) Implement coherence optimization to derive the optimal

polarization state ω. This is an optional step.
3) Derive the scattering entropy / by applying target

decomposition to polarimetric interferometric coherence
matrix + and select the target DS by applying a threshold
to / .

4) Adaptively select constructively interfering scattering
mechanism of the selected DS by maximizing the ampli-
tude of the complex coherence sum in the polarimetric
interferometric coherence matrix +.

5) Integrate the optimal coherence matrix +(q) into the
QPS interferometry multitemporal InSAR analysis.

To remove the phase contributions from orbital, digital eleva-
tion model (DEM) errors and the atmospheric phase screen
and estimate the parameters of interest, i.e., linear velocity
and target height we select coherent candidate points by using
average coherence derived from +(q). These coherent points
are connected in a spatial network, and numerical integration
is performed with respect to a reference point as defined in
the QPS processing flow [27]. The QPS technique differs from
the PSI technique in three aspects. Interferograms are filtered
and are not required to be formed from a single common
master image, and the target height and displacement are
estimated by selecting a subset of interferograms. In this way,
it inserts the coherence value as a weight to make sure that
only coherent interferograms in +(q) influence the result of
estimation. Hence, no phase triangulation is required to return
to n − 1 interferograms as in the SqueeSAR [9].

III. DATA SETS

To evaluate the performance of the proposed method,
11 quad-polarized ALOS PALSAR images acquired from
June 8, 2006 to March 16, 2009 over the San Fernando Valley,
CA, USA (see Table I) and 21 dual-polarized Sentinel-1
images acquired from August 14, 2015 to April 5, 2017
over the Groningen area in The Netherlands (see Table I)

Fig. 5. Location map of the two test areas. (a) False color composite image
obtained by incoherent temporal average of 11 ALOS PALSAR images of San
Fernando Valley, CA, USA. Blue region: |SHH + SVV|2. Red region: |SHH −
SVV|2. Green region: |2SVH|2. (b) False color composite image obtained by
the incoherent temporal average of 21 Sentinel-1 images of the Groningen
area, The Netherlands. Blue region: |SVV + SVH|2. Green region: |SVH|2.
Red region: |SVV|2.

were used. The ALOS PALSAR sensor acquires data in
the L-band for the quad-polarization images, whereas the
Sentinel-1 sensor acquires data in the C-band for both
dual- and single-polarimetric images (see Table II). The test
areas contain 930 × 5715 pixels and cover 10.76 km ×
20.23 km for the ALOS PALSAR and 1855 × 955 pixels
and 13.3 km × 6.8 km for the Sentinel-1 data in the
range and azimuth directions, respectively. The ALOS
PALSAR image consists of predominantly urban region
[see Fig. 5(a)], and the Sentnel-1 image consists of a predom-
inantly natural environment that consists of agricultural area
[see Fig. 5(b)]. The polarimetric content of the two scenes can
be observed from the false color composites of the two regions
(see Fig. 5).

IV. RESULTS

Pixel similarity within a pixel neighborhood is estab-
lished by implementing the Wishart distance classification
method [19]. The average coherency matrix is first constructed
by using single-look coherency matrices in the temporal
dimension. The scattering property for the scene, i.e., average
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Fig. 6. (a) Number of homogenous pixels identified within 15 × 15 window
by the classification of scattering mechanisms for the ALOS PALSAR data.
(b) Scattering entropy for the study area. Low entropy values represent a
deterministic single dominant scattering mechanism, whereas high entropy
values represent multiple random scattering mechanisms within a resolution
cell.

Fig. 7. (a) Number of homogenous pixels identified within 15×15 window by
the classification of scattering mechanisms from Sentinel-1 data. (b) Scattering
entropy for the study area.

TABLE II

ACQUISITION PARAMETERS FOR THE ALOS PALSAR QUAD-POLARIZED
IMAGES AND SENTINEL-1 DUAL-POLARIZED IMAGES

scattering mechanism (α̃) and the scattering entropy (H )
are derived by implementing the Cloude–Pottier eigenvalue–
eigenvector decomposition method [5]. α̃ derived in
Section II-B by implementing the Cloude–Pottier eigenvalue–
eigenvector decomposition assumes different values from the
optimal scattering mechanism α defined in this section. The
reason is that α̃ describes the dominant scattering mecha-
nism present within the resolution cell, whereas α defines
the scattering mechanism that maximizes the interferomet-
ric coherence in a polarimetric SAR data stack. Hence,
α̃ and α have similar values in resolution cells, where there
is a deterministic point scatterer. In DS scatterers, α̃ and α
assume different values. To implement the Wishart distance
classification routine for the classification of scattering prop-
erties, α̃ and H values were plotted on the H/α plane, and
the center points in each class were selected to initialize
the classification process. We implemented the combination
of the unsupervised target decomposition classifier and the
supervised Wishart classifier routine described in Section II-D,
which resulted in results in eight distinct scattering mechanism
classes. A 10% pixel switching threshold is used as termination

Fig. 8. Comparison between (a) unfiltered false color composite inten-
sity Sentinel-1 dual-polarization image acquired on August 14, 2015 and
(b) false color composite of the same image obtained by applying the scat-
tering property-based adaptive filtering method. Blue region: |SVV + SVH|2.
Green region: |SVH|2. Red region: |SVV|2.

Fig. 9. Comparison of entropy distribution for pixels with temporal
coherence greater than 0.9 for the Senitnel-1 data. For / > 0.4, selecting the
constructively interfering secondary scattering mechanisms with the dominant
scattering mechanism +(q) selects more pixels than by using the dominant
scattering mechanism +(q1).

criteria. To establish homogeneity within the neighboring of
DS pixels, spatial connectivity of pixels of a similar scattering
class is assessed. A minimum number of eight pixels within a
15 × 15 pixels are used to establish this pixel neighborhood.
Pixels that did not fulfill the eight interconnected neighboring
pixels were designated as isolated pixels. Isolated pixels not
belonging to the PS candidates were merged with the class
that has the majority surrounding those pixels. The num-
ber of homogenous pixels generated using a 15 × 15 pixel
neighborhood from the classified scattering class is shown
in Figs. 6(a) and 7(a). The effectiveness of the scattering
property-based adaptive filtering method is demonstrated by
filtering a single-look Sentinel-1 image (see Fig. 8). The
scattering property-based adaptive filtering method clearly
reduces speckle while preserving feature shapes and edges.

The proposed method adaptively selected the secondary
scattering mechanisms that interfere constructively with the
dominant scattering mechanisms, hence improving the over-
all pixel coherence estimate. This can be observed from
Figs. 3 and 4. The coherence interferograms with short tem-
poral baselines located near the diagonal line show higher
coherence. However, coherence interferograms with long per-
pendicular baselines [in images 6 and 7 of Fig. 3(b) and (d)]
display low-coherence values. With DS decomposition,
the coherence values with short temporal baselines show a
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significant increase (>0.1), whereas the coherence interfero-
grams with long spatial and temporal baselines do not show
much improvement from the polarimetrically optimized coher-
ence matrix +(ω). This is reasonable because with temporal
decorrelation, the scattering property of the media changes
and may be unrelated to interference of different scattering
mechanisms.

We selected the DS candidate points for the application of
the proposed method by using the phase entropy / defined
in Section II-E. For / ≤ 0.4, the dominant scattering
mechanism q1 achieves the highest coherence value indicating
all secondary scattering mechanisms constitute noise. For
0.4 < / ≤ 0.9, the proposed method increased the average
pixel coherence estimate by removing the noisy scattering
mechanism (see Fig. 9).

Results from the proposed method were evaluated in terms
of the number of pixels selected as measurement points,
i.e., the detail of the derived displacement map and the
accuracy of the derived displacement map. We used the
dominant scattering mechanism q1 derived from the VV chan-
nel +(q1) selected by implementing the method detailed
in [2] and the proposed method applied on the polarimet-
rically optimized coherence matrix +(ω)q for comparison.
For consistency, adaptive spatial filtering in the formation of
+(VV), +(q1), and +(ω)q used the same SHP patch. On the
ALOS PALSAR data, +(VV) selected 8091 pixels, +(q1)
selected 21 476 pixels, and +(ω)q selected 63 605 pixels,
respectively (see Table III) by using a temporal coherence
threshold γt > 0.9. To evaluate the improvement obtained
when using polarimetric optimization, we compared the
number of pixels selected from polarimetrically optimized
coherence matrix +(ω) and dominant scattering mechanism
derived from decomposition of optimized coherence matrix
+(ω)q1. +(ω) selected 28 264 pixels and +(ω)q1 selected
42 654 pixels.

Next, the proposed method was implemented on a dual-
polarized Sentinel-1 data and the VV channel. +(VV) selected
5244 measurement points, +(q1) selected 8639 pixels, and
+(ω)q selected 13 578 pixels, respectively, by using a temporal
coherence threshold γt > 0.9. To evaluate the improvement
obtained when using polarimetric optimization, we compared
the number of pixels selected from polarimetric optimization,
dominant scattering mechanism derived from optimized coher-
ence matrix, and the proposed method. The polarimetrically
optimized coherence matrix +(ω) selected 8087 pixels, and the
dominant scattering mechanism +(ω)q1 selected 9976 pixels.
The ALOS PALSAR scene is located in a predominantly
urban region, where there is a mixture of distinct scattering
mechanisms, as shown in Fig. 6(b). Therefore, the proposed
method was able to improve the pixel average coherence
estimate significantly (see Fig. 10). The Sentinel-1 image,
however, is located in a rural region where there was a
much more random scattering mechanism with a high entropy
[see Fig. 7(b)]. Hence, the proposed method did not provide
much improvement in coherence.

The overall computational burden of the proposed method is
6.35 × 10−3 s per DS candidate pixel. The implementation of
the scattering property-based adaptive filtering routine required

Fig. 10. Temporal coherence derived from (a) ALOS PALSAR data set and
(b) Sentinel-1 data set.

TABLE III

NUMBER OF PIXELS SELECTED FROM THE COHERENCE MATRIX DERIVED
FROM VV CHANNEL +(VV), THE DOMINANT SCATTERING

MECHANISM +(q1), AND ADAPTIVELY SELECTING
THE CONSTRUCTIVELY INTERFERING SCATTERING

MECHANISMS FROM THE POLARIMETRICALLY
OPTIMIZED COHERENCE MATRIX +(ω)q

23% of the overall computational time per pixel, whereas
polarimetric coherence optimization utilizing conjugate gra-
dients required 31% per pixel. However, the phase entropy-
based DS identification and the coherence matrix optimization
by the selection of constructively interfering scattering mecha-
nism by exhaustive search optimization were computationally
expensive, especially if the full set of eigenvectors were
considered for optimization. It required 3.42 × 10−3 s per
DS pixel for the ALOS PALSAR data (11 images) and
8.98 s per DS pixel for the Sentinel-1 data (21 images) when
implemented on MATLAB run with a Linux operating system
on an Intel core i7 2.70-GHz processor laptop with eight
processing cores. It is clear that DS identification and exhaus-
tive search optimization of constructively interfering scattering
mechanism are the most expensive one. The computational
efficiency is significantly improved by imposing a threshold
on the minimum value of eigenvalue for the eigenvector to
be considered for optimization. It required 46% of the overall
processing time when a threshold of 0.2 is applied on the
eigenvalue when processing the Sentinel-1 data.

The deformation maps provided by the proposed method
were compared with the VV channel and the dominant scatter-
ing mechanism derived from it. We derived the displacement
maps shown in Figs. 11 and 12 using the SARPROZ mul-
titemporal InSAR processing software [28]. The deformation
trend estimated from each method showed good agreement.
However, the details provided by the proposed method is
higher than +(VV) and +(q1). In the ALOS PALSAR scene,
more details are provided by the proposed method than by
the other methods, thereby clearly delineating the boundaries
of the subsidence phenomena [see Fig. 11(c)]. We have not
included the results of PSI for the ALOS PALSAR data set,
since a minimum number of 15–20 images are required for
a PSI analysis [7]. With the availability of more images,
the quality of PSI analysis increases.



MULLISSA et al.: POLARIMETRY-BASED DS PROCESSING METHOD FOR PSI APPLICATIONS 3379

Fig. 11. Deformation rate in mm yr−1 measured from the adaptively filtered ALOS PALSAR images. (a) VV channel +(VV). (b) Dominant scattering
mechanism derived from VV channel +(q1). (c) Proposed method +(ω)q . The PSI method is not included, because the PSI analysis derived from 11 images
is unreliable.

To assess the performance of the displacement estimation
from the proposed method, we compared the temporal coher-
ence from +(VV), +(q1), and +(ω)q coherence matrices.
Temporal coherence is a parameter that measures the phase
residual after estimation and removal of atmospheric phase
screen, orbital, and DEM phase errors [8]. Higher temporal
coherence corresponds with a lower phase residual and a high
model fit. As can be seen from Fig. 10, +(ω)q provides
higher temporal coherence than +(VV) and +(q1). In this
way, we conducted a detailed time series analysis around the
village of Langelo at a location of a gas extraction plant
and the town of Roden for the Sentinel-1 data (see Fig. 13).
Fig. 13(a) shows that the VV channel, +(q1), and +(ω)q
provide a similar displacement time series when compared
for a PS candidate. However, the accuracy of displacement
measurement deviated when comparing a PS candidate and a
nearby DS candidate [see Fig. 13(b)]. The reason for this can
be the variation in point density, which induces unwrapping

errors. This is demonstrated by the time series extracted
over the village of Roden [see Fig. 13(a)] with similar point
densities, which shows a similar displacement time series for
all methods. On the contrary over the Langelo gas extraction
site in Groningen [see Fig. 13(b)], the point density is different,
and the displacement time series is different due to unwrapping
errors. In the future studies, the reliability of each method
should be investigated against in situ measurements, such
as GPS.

V. CONCLUSION AND DISCUSSION

In this paper, the scattering property-based speckle filtering
suggested in [20] and [23] for single quad-polarized data
has been extended to estimate both quad-polarized and dual-
polarized interferometric coherency matrices. Estimation of
the polarimetric coherency matrix by averaging in the temporal
dimension helped to preserve the scene resolution. This was
important in an application to multitemporal InSAR analysis,
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Fig. 12. Deformation rate in mm yr−1 measured from the adaptively filtered Sentinel-1 images. (a) VV channel +(VV). (b) Dominant scattering mechanism
derived from VV channel +(q1). (c) Proposed method +(ω)q . (d) PSI.

Fig. 13. Displacement time series obtained from the Sentinel-1 data sets by
applying different methods on (a) measurement point from a PS candidate
and (b) measurement point taken from a PS pixel candidate and a DS pixel
candidate.

where the analysis focuses on pixel candidates that are strongly
stable scatterers. The application of adaptive filtering helped to
improve the accuracy of coherence estimation, as coherence

bias depends upon the number of samples (looks) and the
stationarity assumption used during estimation [29]. In this
way, maintaining the homogeneity of the neighborhood pixels
by applying the scattering property-based adaptive filtering and
using a larger averaging window to have a large number of
samples minimizes the bias in coherence estimation.

The modified phase decomposition method described in this
paper helped improving the interferometric phase quality by
discarding noisy scattering mechanisms in the resolution cell.
The scattering mechanisms can be understood as scatterers
that have distinct phase centers with different height and
spatial locations. We exploited the interference pattern of the
secondary scattering mechanisms to improve the coherence
of the resolution cell. It was effective in removing secondary
scattering mechanisms that interfered with other dominant
scattering mechanisms. Theoretically, all secondary scattering
mechanisms can interfere constructively. In this paper, but only
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a few of those do so, the others constitute noise. Their effects
are more pronounced in DS pixels without a significantly dom-
inant scatterer. The proposed method removes these sources of
noise from the pixel.
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